matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenKoordinatentransformation
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Koordinatentransformation
Koordinatentransformation < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinatentransformation: Spannungszustand
Status: (Frage) beantwortet Status 
Datum: 11:31 Do 08.09.2016
Autor: amd-andy

Hallo,

prinzipiell geht es um die Drehung des Koordinatensystems, bzw. aus der technischen Mechanik ebener Spannungszustand. Dazu mein Matheproblem:

ich habe folgende Matrix S'= [mm] \pmat{ sigma_{xi-xi} & tau_{xi-eta} \\ tau_{eta- xi} & sigma_{eta-eta} } [/mm] = TST' = [mm] \pmat{ cos\alpha & sin\alpha \\ -sin\alpha & cos\alpha } \pmat{ sigma_{xx} & tau_{xy} \\ tau_{yx} & sigma_{yy}}\pmat{ cos\alpha & -sin\alpha \\ sin\alpha & cos\alpha } [/mm]

...so dass die gesuchten Spannungen durch

[mm] sigma_{xi-xi} [/mm] = [mm] sigma_{xx}cos^2\alpha [/mm] + [mm] sigma_{yy}sin^2\alpha [/mm] + 2 [mm] tau_{xy}sin\alpha cos\alpha [/mm]
[mm] sigma_{eta-eta} [/mm] = [mm] sigma_{xx}sin^2\alpha [/mm] + [mm] sigma_{yy}cos^2\alpha [/mm] - 2 [mm] tau_{xy}sin\alpha cos\alpha [/mm]
[mm] tau_{xi-eta} [/mm] = [mm] (sigma_{yy}-sigma_{xx})sin\alphacos\alpha [/mm] + [mm] tau_{xy}(cos^2\alpha-sin^2\alpha) [/mm]

gegeben sind. (Auszug aus dem Buch)

Meine Frage: Wie komme ich von der Matrix zu der nach sigma und tau aufgelösten Gleichungen. Hier fehlt mir, glaube ich, einfach nur das entsprechende Schagwort. Kann mir jemand helfen, wie ich hier rechnen muss?


Danke schon mal im Voraus!

        
Bezug
Koordinatentransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 13:48 Do 08.09.2016
Autor: Gonozal_IX

Hiho,

multipliziere die rechte Seite mal aus, also ausrechnen.

Dann hast du links und rechts jeweils eine Matrix und vergleichst die Einträge.

Gruß,
Gono

Bezug
                
Bezug
Koordinatentransformation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:37 Do 08.09.2016
Autor: amd-andy

sauber aufschreiben hilft!

Danke vielmals! Manchmal ist es so offensichtlich...!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]