matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikKoordinatensystem, Wege
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Koordinatensystem, Wege
Koordinatensystem, Wege < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinatensystem, Wege: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:55 Sa 05.05.2007
Autor: SgtYellowPepper

Aufgabe
Ein New Yorker Taxifahrer will von der 1. avenue, 44. street zu der 5. avenue, 34. street. Wenn er nur in Zielrichtung fährt und der Weg minimal sein soll, wieviele verschiedene Wege gibt es?
(Hinweis: Man betrachtet die Stadt als 2-dimensionales Koordinatennetz.)

Desweiteren ergibt sich daraus auch die weitere Aufgabe:
Ein Käfer sitzt im Ursprung eines räumlichen Gitters mit den Koordinaten n,m,k. Wieviel verschiedene Wege gibt es für ihn zum Punkt (n,m,k)? Er bewegt sich immer Richtung Ziel (Koordinatenrichtung) und der Weg soll auch hier minimal sein. Wieviele Wege gibt es speziell für n=m=k=5?

Weiß jemand die Antwort?
Ich habe bei der Taxi-Aufgabe erste Anhaltspunkt, dass es bei einem 2x2 Quadrat von links oben nach rechts unten z.B. 6 Wege gibt.
Aber weiter komme ich nicht.

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:

http://matheplanet.com/default3.html?call=viewforum.php?forum=5072&ref=http%3A%2F%2Fwww.google.de%2Fsearch%3Fq%3Dstochastik%2Bforum%26ie%3Dutf-8%26oe%3Dutf-8%26aq%3Dt%26rls%3Dorg.mozilla%3Ade%3Aofficial%26client%3Dfirefox-a

        
Bezug
Koordinatensystem, Wege: Antwort
Status: (Antwort) fertig Status 
Datum: 15:47 So 06.05.2007
Autor: Ankh


> Ein New Yorker Taxifahrer will von der 1. avenue, 44.
> street zu der 5. avenue, 34. street. Wenn er nur in
> Zielrichtung fährt und der Weg minimal sein soll, wieviele
> verschiedene Wege gibt es?
>  (Hinweis: Man betrachtet die Stadt als 2-dimensionales
> Koordinatennetz.)
>  
> Desweiteren ergibt sich daraus auch die weitere Aufgabe:
>  Ein Käfer sitzt im Ursprung eines räumlichen Gitters mit
> den Koordinaten n,m,k. Wieviel verschiedene Wege gibt es
> für ihn zum Punkt (n,m,k)? Er bewegt sich immer Richtung
> Ziel (Koordinatenrichtung) und der Weg soll auch hier
> minimal sein. Wieviele Wege gibt es speziell für n=m=k=5?
>  Weiß jemand die Antwort?
>  Ich habe bei der Taxi-Aufgabe erste Anhaltspunkt, dass es
> bei einem 2x2 Quadrat von links oben nach rechts unten z.B.
> 6 Wege gibt.
>  Aber weiter komme ich nicht.

Avenues verlaufen meines Erachtens in Nord-Süd-Richtung und Streets von Ost nach West.
Insgesamt muss er also 5-1=4 Einheiten in Ost-West-Richtung und 44-34=10 Einheiten
in Nord-Südrichtung zurücklegen. Eine analoge Aufgabe wäre z.B.:
In einer Urne liegen 4 rote und 10 schwarze Kugeln.
Es werden nacheinander einzelne Kugeln ohne Zurücklegen gezogen.
Wieviele Möglichkeiten gibt es?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]