matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesKoordinatenabbildung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra Sonstiges" - Koordinatenabbildung
Koordinatenabbildung < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinatenabbildung: Koordinatenabbildung bzgl D1
Status: (Frage) beantwortet Status 
Datum: 19:03 So 09.09.2007
Autor: fuchsone

Aufgabe
Es sie V = [mm] \pmat{ a & o \\ b & c } [/mm] a,b,c [mm] \in \IR [/mm]  der Vektorraum der unteren 2x2
                          
Dreicksmatrizen
              
mit den Basen D1  [mm] \pmat{ 1 & 0 \\ 0 & 0 } [/mm] ,  [mm] \pmat{ 1 & 0 \\ 2 & 0 } [/mm] , [mm] \pmat{ 1 & 0 \\ 2 & 3 } [/mm] und D2 [mm] \pmat{ 1 & 0 \\ 1 & 0 } [/mm] , [mm] \pmat{ 0 & 0 \\ 1 & 1 } [/mm] , [mm] \pmat{ 1 & 0 \\ 0 & 1 } [/mm] geben.

Man bestimme die Koordinatenabbildung KD1 : V [mm] \to \IR [/mm] hoch n bzgl. der Basis D1 und b.) bzgl der Basis D2

weiterhin sei L die folgende lineare abbildung  

L:V [mm] \to [/mm] V   L: [mm] \pmat{ a & o \\ b & c } \mapsto \pmat{ c & 0 \\ b+c & a+b+c } [/mm]

KD1 bzgl. der Basis D1 kann ja nun mit hilfe des Gauß algorithmus bestimmt werden.
Aber in diesem Fall komme ich nicht weiter kann mir jemand helfen?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Koordinatenabbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:23 Mo 10.09.2007
Autor: angela.h.b.


> Es sie V = [mm]\pmat{ a & o \\ b & c }[/mm] a,b,c [mm]\in \IR[/mm]  der
> Vektorraum der unteren 2x2
>
> Dreicksmatrizen
>
> mit den Basen D1  [mm]\pmat{ 1 & 0 \\ 0 & 0 }[/mm] ,  [mm]\pmat{ 1 & 0 \\ 2 & 0 }[/mm]
> , [mm]\pmat{ 1 & 0 \\ 2 & 3 }[/mm] und D2 [mm]\pmat{ 1 & 0 \\ 1 & 0 }[/mm] ,
> [mm]\pmat{ 0 & 0 \\ 1 & 1 }[/mm] , [mm]\pmat{ 1 & 0 \\ 0 & 1 }[/mm] geben.
>  
> Man bestimme die Koordinatenabbildung KD1 : V [mm]\to \IR[/mm] hoch
> n bzgl. der Basis D1 und b.) bzgl der Basis D2
>  weiterhin sei L die folgende lineare abbildung  
>
> L:V [mm]\to[/mm] V   L: [mm]\pmat{ a & o \\ b & c } \mapsto \pmat{ c & 0 \\ b+c & a+b+c }[/mm]


Hallo,

die Basisvektoren der Basis [mm] D_1 [/mm] sind [mm] u_1:=\pmat{ 1 & 0 \\ 0 & 0 }, u_2:=\pmat{ 1 & 0 \\ 2 & 0 }, u_3:=\pmat{ 1 & 0 \\ 2 & 3 }. [/mm]

Wenn ich die Aufgabe recht verstehe, sollst Du nun die darstellende Matrix der Abbildung L bzgl. dieser Basis [mm] D_1 [/mm] bestimmen.

Das geht nicht anders als sonst auch:

Berechne die Bilder der Basisvektoren und stelle diese Bilder als Linearkombination der Basisvektoren dar. Die Koeffizienten dieser Linearkombinationen bilden die Spalten der gesuchten Matrix.

Ich mach's für [mm] u_1 [/mm] vor:

[mm] L(u_1)= L(\pmat{ 1 & 0 \\ 0 & 0 }) =\pmat{ 0 & 0 \\ 0 & 1 } =0*\pmat{ 1 & 0 \\ 0 & 0 }+(-\bruch{1}{3})\pmat{ 1 & 0 \\ 2 & 0 }+\bruch{1}{3}\pmat{ 1 & 0 \\ 2 & 3 } =\vektor{0 \\ -\bruch{1}{3}\\\bruch{1}{3}}_{D_1}, [/mm]

und dieser Vektor ist die erste Spalte der gesuchten Matrix.

Gruß v. Angela





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]