Konvexität < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:56 Di 09.02.2016 | Autor: | Mathics |
Aufgabe | Kann man die Funktionen in Abbildung A, B, C und D als quasikonvex oder quasikonkav bezeichnen? |
Hallo,
Eine Funktion f: D [mm] \to \IR [/mm] heißt quasikonvex, falls für alle a [mm] \in \IR [/mm] die Menge
[mm] \{ x \in D: f(x) \le a \}
[/mm]
eine konvexe Menge ist.
Bezogen auf Abbildung A: Ich würde sagen, dass die Funktion quasikonvex ist, da die Menge der Punkte, für die die Funktionswerte unterhalb der roten Linie liegen, ein einzelnes Intervall ist und somit eine konvexe Menge darstellt.
Es ist keine quasikonkave Funktion, da die Menge der Punkte, für die die Funktionswerte oberhalb der roten Linie, eine Vereinigung von zwei getrennten Intervallen und daher keine konvexe Menge ist.
Eine Funktion f: D [mm] \to \IR [/mm] heißt quasikonkav, falls für alle a [mm] \in \IR [/mm] die Menge
[mm] \{ x \in D: f(x) \ge a \}
[/mm]
eine konvexe Menge ist.
Bezogen auf Abbildung B: Analog würde ich sagen, dass dies eine quasikonkave Funktion ist, da die Menge der Punkte, für die die Funktionswerte überhalb der roten Linie liegen, ein einzelnes Intervall ist und somit eine konvexe Menge darstellt.
Es ist keine quasikonvexe Funktion, da die Menge der Punkte, für die die Funktionswerte unterhalb der roten Linie, eine Vereinigung von zwei getrennten Intervallen und daher keine konvexe Menge ist.,
Bezogen auf Abbildung C: Es ist KEINE quasikonkave Funktion. Für die rote Linie würde man denken, das ist eine quasikonkave Funktion. Aber dass [mm] \{ x \in D: f(x) \ge a \} [/mm] eine konvexe Menge ist, muss für ALLE a gelten. Da es hier noch einen zweiten "Hügel" gibt, haben wir für bestimmte a's eine Vereinigung von zwei getrennten Intervallen und keine konvexe Menge.
Bezogen auf Abbildung D: Analog zu den obigen Ausführungen würde ich sagen, das ist eine quasikonkave UND quasikonvexe Funktion.
Ist das alles richtig?
Vielen Dank!
LG
Mathics
l.
[Dateianhang nicht öffentlich]
Dateianhänge: Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:49 Mi 10.02.2016 | Autor: | fred97 |
> Kann man die Funktionen in Abbildung A, B, C und D als
> quasikonvex oder quasikonkav bezeichnen?
>
>
> Hallo,
>
> Eine Funktion f: D [mm]\to \IR[/mm] heißt quasikonvex, falls für
> alle a [mm]\in \IR[/mm] die Menge
>
> [mm]\{ x \in D: f(x) \le a \}[/mm]
>
> eine konvexe Menge ist.
>
>
> Bezogen auf Abbildung A: Ich würde sagen, dass die
> Funktion quasikonvex ist, da die Menge der Punkte, für die
> die Funktionswerte unterhalb der roten Linie liegen, ein
> einzelnes Intervall ist
Das stimmt doch nicht ! Schau mal ganz links und ganz rechts !
Ich mach es kurz: in allen 4 Bildern sind die Funktionen weder quasikonvex noch quasikonkav.
FRED
> und somit eine konvexe Menge
> darstellt.
>
> Es ist keine quasikonkave Funktion, da die Menge der
> Punkte, für die die Funktionswerte oberhalb der roten
> Linie, eine Vereinigung von zwei getrennten Intervallen und
> daher keine konvexe Menge ist.
>
>
> Eine Funktion f: D [mm]\to \IR[/mm] heißt quasikonkav, falls für
> alle a [mm]\in \IR[/mm] die Menge
>
> [mm]\{ x \in D: f(x) \ge a \}[/mm]
>
> eine konvexe Menge ist.
>
> Bezogen auf Abbildung B: Analog würde ich sagen, dass dies
> eine quasikonkave Funktion ist, da die Menge der Punkte,
> für die die Funktionswerte überhalb der roten Linie
> liegen, ein einzelnes Intervall ist und somit eine konvexe
> Menge darstellt.
>
> Es ist keine quasikonvexe Funktion, da die Menge der
> Punkte, für die die Funktionswerte unterhalb der roten
> Linie, eine Vereinigung von zwei getrennten Intervallen und
> daher keine konvexe Menge ist.,
>
> Bezogen auf Abbildung C: Es ist KEINE quasikonkave
> Funktion. Für die rote Linie würde man denken, das ist
> eine quasikonkave Funktion. Aber dass [mm]\{ x \in D: f(x) \ge a \}[/mm]
> eine konvexe Menge ist, muss für ALLE a gelten. Da es hier
> noch einen zweiten "Hügel" gibt, haben wir für bestimmte
> a's eine Vereinigung von zwei getrennten Intervallen und
> keine konvexe Menge.
>
>
> Bezogen auf Abbildung D: Analog zu den obigen Ausführungen
> würde ich sagen, das ist eine quasikonkave UND
> quasikonvexe Funktion.
>
>
> Ist das alles richtig?
>
>
> Vielen Dank!
>
> LG
> Mathics
>
> l.
>
> [Dateianhang nicht öffentlich]
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 10:39 Mi 10.02.2016 | Autor: | Mathics |
Hallo Fred,
> Das stimmt doch nicht ! Schau mal ganz links und ganz
> rechts !
>
> Ich mach es kurz: in allen 4 Bildern sind die Funktionen
> weder quasikonvex noch quasikonkav.
Stimmt, jetzt seh' ich es auf! Ich kam dann auf die Idee einfach das ganz links und ganz rechts auf Höhe von der roten Linie abzuschneiden, aber ich könnte ja einfach ein anderes (höheres) a nehmen und hätte dann das gleiche Problem.
Auf der Wikipedia-Seite stellt die erste Abbildung eine quasikonvexe Funktion dar.
https://de.wikipedia.org/wiki/Quasikonvexe_Funktion
Gibt es auch noch Funktionen, die eine andere Form als im Wikipedia Artikel haben, quasikonvex/quasikonkav sind, aber nicht konvex/konkav?
Gibt es denn Funktionen, die quasikonvex und quasikonkav sind?
Hättest du eventuell ein Beispiel?
Vielen Dank!
LG
Mathics
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:20 Fr 12.02.2016 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|