matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenzradius + lim sup
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Konvergenzradius + lim sup
Konvergenzradius + lim sup < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius + lim sup: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:44 Mi 26.03.2008
Autor: abi2007LK

Hallo,

wieder eine kleine Aufgabe mit einer Frage dazu. Zunächst die Aufgabe und die Musterlösung:

Aufgabe: Bestimmen Sie alle x [mm] \in \IR, [/mm] für die folgende Potenzreihe konvergiert:

[mm] \summe_{n=0}^{\infty} \frac{n!}{(n+1)! + n}x^n [/mm]

Musterlösung:

Es sei [mm] b_n [/mm] := [mm] \frac{n!}{(n+1)! + n}. [/mm] Wegen [mm] b_n [/mm] = [mm] \frac{1}{n+1+\frac{1}{(n-1)!}} [/mm] und 0 < [mm] \frac{1}{(n-1)!} \le [/mm] 1 folgt:

[mm] \frac{1}{\wurzel[n]{n+2}} \le \wurzel[n]{|b_n|} \le \frac{1}{\wurzel[n]{n}} [/mm] und damit: [mm] \overline{\limes_{n\rightarrow\infty}} \wurzel[n]{|b_n|} [/mm] = 1, Konvergenzradius R = 1.

Okay - der Beweis geht noch weiter (Fallunterscheidung mit x = 1 und x = -1) - aber an der Stelle setzt es bei mir schon aus.

Die oben gemachten Umformungen und Abschätzungen sind mir klar. Aber wieso wieso folgt da der limes superior [mm] \overline{\limes_{n\rightarrow\infty}} \wurzel[n]{|b_n|} [/mm] ?

In meinem Buch steht in diesem Zusammenhang folgendes:

Existiert [mm] \limes_{n\rightarrow\infty} \wurzel[n]{|a_n|} [/mm] (mit [mm] a_n [/mm] ist die Folge der Partialsummen der Potenzreihe gemeint), so ist [mm] \frac{1}{r} [/mm] = [mm] \overline{\limes_{n\rightarrow\infty}} \wurzel[n]{|a_n|} [/mm] (wobei r der Konvergenzradius sein soll).

Die Musterlösung geht ja davon aus, dass der Limes nicht existiert und wendet dann diese "Formel" an. Aber der Limes existiert doch... denn:

Mit dieser tollen Abschätzung:

[mm] \frac{1}{\wurzel[n]{n+2}} \le \wurzel[n]{|b_n|} \le \frac{1}{\wurzel[n]{n}} [/mm]

habe ich doch gezeigt, dass er existiert. Habe ihn sogar bestimmt. Und dann kommt plötzlich der lim sup ins Spiel...

        
Bezug
Konvergenzradius + lim sup: Antwort
Status: (Antwort) fertig Status 
Datum: 15:26 Mi 26.03.2008
Autor: pelzig


> Mit dieser tollen Abschätzung:
>  
> [mm]\frac{1}{\wurzel[n]{n+2}} \le \wurzel[n]{|b_n|} \le \frac{1}{\wurzel[n]{n}}[/mm]
>
> habe ich doch gezeigt, dass er existiert. Habe ihn sogar
> bestimmt. Und dann kommt plötzlich der lim sup ins Spiel...

Richtig, deine Folge [mm] $\sqrt[n]{|b_n|}:=c_n$ [/mm] konvergiert gegen $1$, folgt aus dem Sandwich-Lemma.
Der Limes Superior/Inferior ist doch einfach das Maximum/Minimum der Menge der Häufungspunkte. Konvergente Reihen besitzen immer nur einen Häufungspunkt, d.h. für beliebige Folgen [mm] $a_n$ [/mm] gilt: [mm] $\lim a_n=a\Leftrightarrow\lim\sup a_n=\lim\inf a_n=a$. [/mm]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]