Konvergenzradius < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Bestimmen Sie den Konvergenzradius folgender Potenzreihen.
a) [mm] \summe_{k\ge0}^{n}(k^{5}log(k+1)+k^{2})x^{k}
[/mm]
b) [mm] \summe_{k\ge0}^{n}3^{\bruch{k}{2}}e^{-k}x^{k}
[/mm]
c) [mm] \summe_{k\ge0}^{n}a_{k}(x-a)^{mk} [/mm] mit M [mm] \in \IN, [/mm] wobei die Reihe [mm] \summe_{k\ge0}^{n}a_{k}(x-a)^{mk} [/mm] den Konvergenzradius p=2 habe. |
Hallo!
Ich hab mal wieder so einige Verständnisprobleme und habe leider überhaupt nicht verstanden wie den Konvergenzradius berechne.
Könnte mir da jmd eine Hilfestellung geben.
Vielen Dank!
Grüße CHarlie
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:28 Mi 14.05.2008 | Autor: | Merle23 |
> Bestimmen Sie den Konvergenzradius folgender Potenzreihen.
>
> a) [mm]\summe_{k\ge0}^{n}(k^{5}log(k+1)+k^{2})x^{k}[/mm]
>
> b) [mm]\summe_{k\ge0}^{n}3^{\bruch{k}{2}}e^{-k}x^{k}[/mm]
>
> c) [mm]\summe_{k\ge0}^{n}a_{k}(x-a)^{mk}[/mm] mit M [mm]\in \IN,[/mm] wobei
> die Reihe [mm]\summe_{k\ge0}^{n}a_{k}(x-a)^{mk}[/mm] den
> Konvergenzradius p=2 habe.
> Hallo!
>
> Ich hab mal wieder so einige Verständnisprobleme und habe
> leider überhaupt nicht verstanden wie den Konvergenzradius
> berechne.
> Könnte mir da jmd eine Hilfestellung geben.
>
> Vielen Dank!
>
> Grüße CHarlie
>
Konvergenzradius
|
|
|
|
|
Hallo, ich muss die Aufgabe auch bearbeiten, hab mich mal an der b) versucht, wäre nett wenn da mal jemand drüber schauen könnte, kann ja sein, dass ich das system falsch verstanden habe.
Also ich hab angefangen mit dem normalen Quotientenkriterium [mm] \vmat{ \bruch{a_{n+1}}{a_n}}, [/mm] also [mm] \bruch{3^{\bruch{k+1}{2}}e^{-k-1}x^{k+1}}{3^{\bruch{k}{2}}e^{-k}x^k} =\bruch{3^{\bruch{k+1}{2}}e^{-k-1}x}{3^{\bruch{k}{2}}e^{-k}} [/mm] = [mm] \bruch{3^{\bruch{k+1}{2}}x}{3^{\bruch{k}{2}}}*\bruch{e^k}{e^{k+1}} [/mm] = [mm] \bruch{3^{\bruch{k+1}{2}}}{3^{\bruch{k}{2}}}*\bruch{x}{e} [/mm] = [mm] \bruch{\wurzel{3^{k+1}}}{\wurzel{3^k}}*\bruch{x}{e} [/mm] = [mm] \wurzel{\bruch{3^{k+1}}{3^k}}*\bruch{x}{e} [/mm] = [mm] \wurzel{3}*\bruch{x}{e} [/mm] = [mm] \bruch{\wurzel{3}x}{e} [/mm] (alles mit Betragsstrichen), wenn nun [mm] \bruch{\wurzel{3}x}{e}<1 [/mm] gilt, ist die Reihe konvergent, also
[mm] |\bruch{\wurzel{3}x}{e}|<1 \gdw \bruch{|\wurzel{3}x|}{|e|}<1 \gdw |\wurzel{3}x|
Vielen Dank schonmal im Voraus.
lg
|
|
|
|
|
Hallo rainman,
> Hallo, ich muss die Aufgabe auch bearbeiten, hab mich mal
> an der b) versucht, wäre nett wenn da mal jemand drüber
> schauen könnte, kann ja sein, dass ich das system falsch
> verstanden habe.
>
> Also ich hab angefangen mit dem normalen
> Quotientenkriterium [mm]\vmat{ \bruch{a_{n+1}}{a_n}},[/mm] also
> [mm]\bruch{3^{\bruch{k+1}{2}}e^{-k-1}x^{k+1}}{3^{\bruch{k}{2}}e^{-k}x^k} =\bruch{3^{\bruch{k+1}{2}}e^{-k-1}x}{3^{\bruch{k}{2}}e^{-k}}[/mm]
> =
> [mm]\bruch{3^{\bruch{k+1}{2}}x}{3^{\bruch{k}{2}}}*\bruch{e^k}{e^{k+1}}[/mm]
> = [mm]\bruch{3^{\bruch{k+1}{2}}}{3^{\bruch{k}{2}}}*\bruch{x}{e}[/mm]
> = [mm]\bruch{\wurzel{3^{k+1}}}{\wurzel{3^k}}*\bruch{x}{e}[/mm] =
> [mm]\wurzel{\bruch{3^{k+1}}{3^k}}*\bruch{x}{e}[/mm] =
> [mm]\wurzel{3}*\bruch{x}{e}[/mm] = [mm]\bruch{\wurzel{3}x}{e}[/mm] (alles mit
> Betragsstrichen), wenn nun [mm]\bruch{\wurzel{3}x}{e}<1[/mm] gilt,
> ist die Reihe konvergent, also
> [mm]|\bruch{\wurzel{3}x}{e}|<1 \gdw \bruch{|\wurzel{3}x|}{|e|}<1 \gdw |\wurzel{3}x|
> die Reihe ist also konvergent für alle x kleiner als
> [mm]\bruch{e}{\wurzel{3}},[/mm] dann ist doch [mm]\bruch{e}{\wurzel{3}}[/mm]
> der Konvergenzradius wenn ich das richtig verstanden habe?
>
> Vielen Dank schonmal im Voraus.
> lg
Alles bestens, aber verwende vieeel einfacher und um Längen schneller das Kriterium von Cauchy-Hadamard (oder das Wurzelkriterium)
Berechne den Konvergenzradius [mm] $R=\frac{1}{\limsup\limits_{k\to\infty}\sqrt[k]{|a_k|}}=\frac{1}{\limsup\limits_{k\to\infty}\sqrt[k]{3^{\frac{k}{2}}\cdot{}e^{-k}}}$
[/mm]
Gruß
schachuzipus
|
|
|
|
|
Oh mann..einfach nur den Kehrwert.....also bei mir im Skript ist das sowas von unverständlich erklärt..danke ..ich werd mich dann mal an die anderen machen....
thx
|
|
|
|