matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz von Reihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Konvergenz von Reihen
Konvergenz von Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz von Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:06 Mo 13.12.2010
Autor: katrin10

Aufgabe
Untersuchen Sie die Reihe [mm] \summe_{n=1}^{\infty}\bruch{(3n)!-n!}{n^{3n}+2n^2} [/mm] auf Konvergenz.

Hallo,

ich habe diese Reihe zunächst nach oben abgeschätzt und dabei [mm] \bruch{(3n)!}{n^{3n}} [/mm] erhalten, was jedoch divergent ist. Deshalb bin ich davon ausgegangen, dass die zu untersuchende Reihe divergent ist und habe sie nach unten mit [mm] \bruch{ n!}{2n^{3n}} [/mm] abgeschätzt, allerdings ist dies konvergent. Wie kann ich die gegebene Reihe abschätzen?

Ich danke für jegliche Hilfe.

Viele Grüße

        
Bezug
Konvergenz von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:13 Di 14.12.2010
Autor: max3000

Mit Abschätzen kommst du hier denke ich nicht weiter.
Das mit der Fakultät und dem ^n sieht sehr verdächtig nach Quotientenkriterium aus. Damit solltest du sicherlich erfolgreich sein.
Du musst dann nur geschickt kürzen. Zum Beispiel kannst du nach Bildung des Quotienten schonmal überall ein n! rauskürzen.

Bezug
        
Bezug
Konvergenz von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:23 Di 14.12.2010
Autor: reverend

Hallo Katrin,

das Trivialkriterium lautet doch: die zu summierende Folge muss eine Nullfolge sein.

Diese hier ist aber monoton wachsend und unbeschränkt.

Das ist zwar auch nicht sooo leicht zu zeigen, aber leichter als die meisten anderen Kriterien.

Alternativ kannst Du auch zeigen, dass [mm] \bruch{(3n)!}{2n^{3n}} [/mm] eine divergente Minorante ist. Da ist es leichter nachzuweisen, dass es sich um keine Nullfolge handeln kann, weil sie monoton wachsend und unbeschränkt ist.

Grüße
reverend


Bezug
                
Bezug
Konvergenz von Reihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:29 Di 14.12.2010
Autor: katrin10

Vielen Dank für die Hinweise. Ich werde mir die Aufgabe nocheinmal ansehen.

Bezug
                
Bezug
Konvergenz von Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:50 Di 14.12.2010
Autor: katrin10

Hallo,

um eine Minorante zu finden, muss man doch den Zähler verkleinern oder den Nenner verkleinern. Die Abschätzung im Nenner von [mm]\bruch{(3n)!}{2n^{3n}}[/mm] ist mir daher klar. Im Zähler hatte man jedoch ursprünglich (3n)!-n! stehen und wenn ich dies mit (3n!) abschätze, wird der Zähler doch größer. Wie kann ich sicher sein, dass [mm]\bruch{(3n)!}{2n^{3n}}[/mm] wirklich kleiner als die ursprüngliche Folge ist?

Bezug
                        
Bezug
Konvergenz von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:00 Di 14.12.2010
Autor: reverend

Hallo,

> um eine Minorante zu finden, muss man doch den Zähler
> verkleinern oder den Nenner verkleinern vergrößern.

Kleine Korrektur...
Man kann natürlich auch beides tun.

> Die Abschätzung
> im Nenner von [mm]\bruch{(3n)!}{2n^{3n}}[/mm] ist mir daher klar. Im
> Zähler hatte man jedoch ursprünglich (3n)!-n! stehen und
> wenn ich dies mit (3n!) abschätze, wird der Zähler doch
> größer.

Gut beobachtet. Es ist darum auch nicht die leichteste aller Minoranten, aber sie funktioniert.

> Wie kann ich sicher sein, dass
> [mm]\bruch{(3n)!}{2n^{3n}}[/mm] wirklich kleiner als die
> ursprüngliche Folge ist?

Für n=1 ist sie das nicht einmal, aber für n>1 stimmts.

Zu zeigen ist es aber nicht so einfach, da nicht trivial. Mit Induktion gehts aber m.E.

Ansonsten brauchst Du halt eine andere divergente Minorante.

Wie wärs mit [mm] \bruch{(3n)!-n!}{2n^{3n}} [/mm] ?

Da ist es ganz einfach zu zeigen, dass es sich um eine Minorante handelt, und eigentlich ist auch die Divergenz nicht schwer zu zeigen.

Grüße
reverend


Bezug
                                
Bezug
Konvergenz von Reihen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:33 Di 14.12.2010
Autor: katrin10

Vielen Dank für die Hilfe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]