matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz von Reihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Konvergenz von Reihen
Konvergenz von Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz von Reihen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 15:10 So 25.11.2007
Autor: balboa

Aufgabe
Bestimmen Sie die Konvergenz der folgenden Reihen
a) [mm] \summe_{k=1}^{\infty}\wurzel{\bruch{1}{2}+\bruch{1}{k}} [/mm]
b) [mm] \summe_{k=0}^{\infty}\bruch{1}{\wurzel{k!}} [/mm]

Ich bin wie folgt vorgegangen:
a)[mm]\summe_{k=1}^{\infty}\wurzel{\bruch{1}{2}+\bruch{1}{k}} = (\bruch{1}{2}+\bruch{1}{k})^{\bruch{1}{2}}[/mm] über das Wurzelkriterium erhalte ich [mm]\bruch{1}{2}+\bruch{1}{k}[/mm] was gegen [mm]\bruch{1}{2}[/mm] läuft und somit <1 und absolut konvergent ist.
Liege ich mit meiner Ausführung richtig oder habe ich etwas nicht beachtet?

b)[mm]\summe_{k=0}^{\infty}\bruch{1}{\wurzel{k!}}[/mm] habe ich umgeformt zu [mm]k!^{-\bruch{1}{2}}[/mm], was divergiert, da es keine Nullfolge bildet.
Auch hier die Frage:  Liege ich mit meiner Ausführung richtig oder habe ich etwas nicht beachtet?

Danke  

        
Bezug
Konvergenz von Reihen: Korrekturen
Status: (Antwort) fertig Status 
Datum: 17:35 So 25.11.2007
Autor: Loddar

Hallo balboa!


Handelt es sich bei der 1. Aufgabe mit [mm] $\wurzel{\bruch{1}{2}+\bruch{1}{k}}$ [/mm] überhaupt um eine Nullfolge, so dass das notwendige Kriterium für Reihenkonvergenz erfüllt ist?


Bei Aufgabe b.) liegst Du auch falsch mit Deinen Ausführungen. [mm] $\bruch{1}{\wurzel{k!}}$ [/mm] ist eine wunderbare Nullfolge. Wende hier das Quotientenkriterium an.


Gruß
Loddar


Bezug
                
Bezug
Konvergenz von Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:37 So 25.11.2007
Autor: balboa

Hallo Loddar,
zu a)
du hast Recht, ich habe übersehen, dass es keine Nullfolge ist, da es nicht unter den Wert [mm]\wurzel{\bruch{1}{2}}[/mm] sinken kann.

zu b)
Wenn ich das Quotientenkriterium anwende erhalte ich doch [mm]\wurzel{\bruch{k!}{(k+1)!}}[/mm]. Läuft das nicht gegen 1 und hat keine Aussage für die Reihe?
Auch wenn ich es wie folgt umschreibe sehe ich keine andere Lösung als 1: [mm]\wurzel{\bruch{k!}{k!\times (k+1)}}[/mm].

Bezug
                        
Bezug
Konvergenz von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:20 So 25.11.2007
Autor: schachuzipus

Hallo Christian,


> Hallo Loddar,
>  zu a)
>  du hast Recht, ich habe übersehen, dass es keine Nullfolge
> ist, da es nicht unter den Wert [mm]\wurzel{\bruch{1}{2}}[/mm]
> sinken kann.
>  
> zu b)
>  Wenn ich das Quotientenkriterium anwende erhalte ich doch
> [mm]\wurzel{\bruch{k!}{(k+1)!}}[/mm]. [ok] Läuft das nicht gegen 1 [notok] und
> hat keine Aussage für die Reihe?
> Auch wenn ich es wie folgt umschreibe sehe ich keine andere
> Lösung als 1 [notok] : [mm]\wurzel{\bruch{k!}{k!\times (k+1)}}[/mm]. [daumenhoch]

Das ist doch genau der entscheidende Umformungsschritt

Hier kannst du doch $k!$ kürzen, und es bleibt [mm] $\sqrt{\frac{1}{k+1}}$ [/mm]

Und das strebt doch für [mm] $k\to\infty$ [/mm] gegen [mm] $\sqrt{0}=0$ [/mm]


LG

schachuzipus


Bezug
                                
Bezug
Konvergenz von Reihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:25 So 25.11.2007
Autor: balboa

Danke,
mein Problem war, dass ich k=0 gesetzt habe und dann entsprechend [mm]\bruch{1}{1}[/mm] dort stehen; aber da k ja gegen [mm]\infty[/mm] strebt nähert es sich gegen 0.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]