matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisKonvergenz uneigentl Integrale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Konvergenz uneigentl Integrale
Konvergenz uneigentl Integrale < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz uneigentl Integrale: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 18:54 Mo 05.12.2005
Autor: gracvaloth

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Habe morgen eine Zwischenprüfung und konnte an der Uni keinen Lösungsweg finden bzw. konnte mir dort keiner wirklich helfen weil wir das erste Semester sind, das diesen Stoff explizit behandelt...

Es soll die Konvergenze folgender 3 Integrale überprüft werden:

a)  [mm] \integral_{0}^{ \infty} [/mm] { [mm] \bruch{x}{sinh(x)} [/mm] dx}

b)  [mm] \integral_{0}^{ 1} [/mm] { [mm] \bruch{ln(1+x)}{x* \wurzel{x}} [/mm] dx}

c)  [mm] \integral_{0}^{ \infty} [/mm] { [mm] \bruch{arctan(x)}{ x^{ \bruch{3}{2}}} [/mm] dx}

Soweit so gut ^^
Als Ansatz habe ich für die beiden Integrale von 0 bis  [mm] \infty [/mm] einfach die Spaltung in ein Integral von 0-1 und eins von [mm] 1-\infty [/mm]

Meine Frage ist nun folgenden:
Welche Möglichkeiten habe ich nun, die Konvergenz festzustellen? Es geht mir rein um die Konvergenz, nicht den Grenzwert!
Die Integrale auszurechnen geht über meine Fähigkeiten und ist soweit ich weiß nicht Sinn der Übung!

Andere Möglichkeit: Abschätzen mittels Konvergenztest! Nur wie?
Wenn ich das richtig verstanden habe, schätze ich das Integral mit einer leicht zu integrierenden Funktion ab, die größer als das Integral ist. Wenn diese Funktion konvergiert, dann konvergiert auch das Integral, oder liege ich da falsch?

Also zB

b)  [mm] \integral_{0}^{1} [/mm] { [mm] \bruch{ln(2)}{x* \wurzel{x}} [/mm] dx} und dann den ln(2) vor das Integral ziehen?

c) [mm] \integral_{0}^{1} [/mm] { [mm] \bruch{ \bruch{ \pi}{2}}{x^{ \bruch{3}{2}}} [/mm] dx}
und
[mm] \integral_{1}^{ \infty} [/mm] { [mm] \bruch{ \bruch{ \pi}{2}}{x^{ \bruch{3}{2}}} [/mm] dx}
und dann mit [mm] \bruch{ \pi}{2} [/mm] genauso verfahren?

Wenn ja, wie würde das für a) ausschauen?

Oder liege ich komplett falsch?!

Vielen Dank

        
Bezug
Konvergenz uneigentl Integrale: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:45 Mi 07.12.2005
Autor: matux

Hallo gracvaloth,

[willkommenmr] !!


Leider konnte Dir keiner hier mit Deinem Problem in der von Dir vorgegebenen Zeit weiterhelfen.

Vielleicht hast Du ja beim nächsten Mal mehr Glück [kleeblatt] .


Viele Grüße,
Matux, der Foren-Agent

Allgemeine Tipps wie du dem Überschreiten der Fälligkeitsdauer entgegenwirken kannst findest du in den Regeln für die Benutzung unserer Foren.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]