matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationKonvergenz uneigendliches I...
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - Konvergenz uneigendliches I...
Konvergenz uneigendliches I... < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz uneigendliches I...: integral
Status: (Frage) beantwortet Status 
Datum: 16:25 So 15.04.2007
Autor: CPH

Aufgabe
Zeige die Konvergenz des uneigendlichen Integrals

[mm] \integral^{\infty}_{0}{sin(x^2) dx} [/mm]

tipp: [mm] sin(x^2)= [/mm] - [mm] \bruch{(cos x^2)'}{2x}; [/mm] erweitere mit x und integriere partiell.
(cos [mm] x^2)' [/mm] ableitung von cos [mm] x^2 [/mm]

Hallo,

Wie würdet ihr vorgehen?

Ich hab noch nie die Konvergenz eines uneigendlichen Integrals gezeigt.

MfG

Christoph

        
Bezug
Konvergenz uneigendliches I...: Antwort
Status: (Antwort) fertig Status 
Datum: 16:59 So 15.04.2007
Autor: Volker2

Hallo,

zerlege den Integrationsbereich geeignet und nutze aus, dass eine monotone alternierende Reihe konvergiert (Leibniz Kriterium?). Das ist analog zur Konvergenz von [mm] $\sum_{n=1}^\infty \frac{(-1)^n}{n}. [/mm]

Volker

Bezug
                
Bezug
Konvergenz uneigendliches I...: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:40 Mo 16.04.2007
Autor: CPH

Hallo, Danke für die Antwort.

Was meinst du mit geeignet  in:

> Hallo,
>  
> zerlege den Integrationsbereich geeignet und nutze aus,
> dass eine monotone alternierende Reihe konvergiert (Leibniz
> Kriterium?). Das ist analog zur Konvergenz von
> [mm]$\sum_{n=1}^\infty \frac{(-1)^n}{n}.[/mm]
>  
> Volker


wie kann man beim Integral eine Reihenkonvergenz ausnutzen?

MfG

Ch

Bezug
                        
Bezug
Konvergenz uneigendliches I...: Antwort
Status: (Antwort) fertig Status 
Datum: 18:28 Mo 16.04.2007
Autor: wauwau

also

[mm] \integral_{0}^{N}{sin(x^2) dx} [/mm] = [mm] \integral_{0}^{1}{sin(x^2) dx}+\integral_{1}^{N}{sin(x^2) dx}\le 1+\integral_{1}^{N}{sin(x^2) dx}= [/mm]
[mm] 1+(-\bruch{cos(N^2)}{2N}+\bruch{cos(1)}{2}-\integral_{1}^{N}{\bruch{cos(x^2)}{2x^2} dx}) \le 1+\bruch{1}{2N}+\bruch{1}{2}+\integral_{1}^{N}{\bruch{1}{2x^2} dx}= \bruch{3}{2}+\bruch{1}{2N}-\bruch{1}{2N}+\bruch{1}{2}=2 [/mm]

Bezug
                                
Bezug
Konvergenz uneigendliches I...: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:08 Mi 18.04.2007
Autor: CPH

Danke, ich glaub jetzt hab ichs.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]