matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz und Grenzwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Konvergenz und Grenzwert
Konvergenz und Grenzwert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz und Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:36 Mi 22.04.2009
Autor: soenne11

Aufgabe
Zeigen Sie, dass die Folge

[mm] x_{n+1} [/mm] := -a [mm] (x_{n} [/mm] - [mm] \bruch{1}{a})^{2} [/mm] + [mm] \bruch{1}{a}, [/mm]

a > 0 , 0 < [mm] x_{0} [/mm] <  [mm] \bruch{1}{a} [/mm]

konvergiert und berechnen Sie den Grenzwert.

...leider habe ich keine Ahung wie ich hier anfangen soll.....

Wer hat einen Denksanstoß oder Tipp für mich?

        
Bezug
Konvergenz und Grenzwert: Hinweise
Status: (Antwort) fertig Status 
Datum: 10:40 Mi 22.04.2009
Autor: Roadrunner

Hallo soenne!


Weise nach, dass diese rekursive Folge sowohl monoton als auch beschränkt ist (z.B. jeweils mittels vollständiger Induktion).

Aus diesen beiden Eigenschaften folgt dann unmittelbar die Konvergenz.


Den Grenzwert $x_$ selber kannst Du über diesen Ansatz zeigen:
$$x \ := \ [mm] \limes_{n\rightarrow\infty}x_{n+1} [/mm] \ = \  [mm] \limes_{n\rightarrow\infty}x_n$$ [/mm]

Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]