matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz und Grenzwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Konvergenz und Grenzwert
Konvergenz und Grenzwert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz und Grenzwert: konvergieren von Reihen
Status: (Frage) beantwortet Status 
Datum: 23:08 So 14.12.2014
Autor: mathswho

Aufgabe
Zeigen Sie, dass die Reihen
(a) [mm] \summe_{n=1}^{\infty} \bruch{(-1)^{n+1}}{4^n} [/mm]
(b) [mm] \summe_{n=0}^{\infty} \bruch{3}{2^{2(n+1)}} [/mm]

Ich blicke wieder mal nicht wirklich durch. Kann mir einer mal vielleicht einen ansatz geben?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Konvergenz und Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 23:28 So 14.12.2014
Autor: DieAcht

Hallo mathswho!


> Zeigen Sie, dass die Reihen
> (a) [mm]\summe_{n=1}^{\infty} \bruch{(-1)^{n+1}}{4^n}[/mm]
> (b)
> [mm]\summe_{n=0}^{\infty} \bruch{3}{2^{2(n+1)}}[/mm]

konvergieren und berechnen Sie jeweils die Summe der Reihe.

(Liege ich richtig?)

> Ich blicke wieder mal nicht wirklich durch.
> Kann mir einer mal vielleicht einen ansatz geben?

Geometrische Reihe!

(Der Tipp bezieht sich auf beide Aufgaben.)


Gruß
DieAcht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]