matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesKonvergenz in l unendlich
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - Konvergenz in l unendlich
Konvergenz in l unendlich < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz in l unendlich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:57 Do 02.05.2013
Autor: Zero_112

Aufgabe
Sei [mm] (v_n)_{n\in\IN} [/mm] eine Folge von Vektoren [mm] v_n [/mm] = [mm] (y_{n,1},y_{n,2},...)\in l_{\infty}(\IR) [/mm] und sei v = [mm] (y_1,y_2,...) [/mm] ein Vektor in [mm] l_{\infty}(\IR). [/mm]

Widerlegen Sie: Für alle [mm] m\in\IN [/mm] gilt: [mm] \limes_{n\rightarrow\infty}y_{n,m} [/mm] = [mm] y_m. \Rightarrow [/mm] Für n gegen Unendlich konvergiert die Folge [mm] (v_n) [/mm] gegen den Vektor v bzgl. der Supremumsnorm || . [mm] ||_{\infty} [/mm] auf [mm] l_{\infty}(\IR) [/mm]



Hallo. Ich komme damit nicht wirklich zurecht.  Ich dachte mir sowas:

[mm] \limes_{n\rightarrow\infty}y_{n,m} [/mm] = [mm] y_m \Rightarrow [/mm] Für alle [mm] \varepsilon [/mm] > 0 existiert ein [mm] N\in\IN [/mm]  : [mm] |y_{n,m}-y_m|< \varepsilon [/mm] für alle n [mm] \ge [/mm] N.

Da ab diesem N alle Abstände der Folgenglieder kleiner epsilon sind, kann dies ja dann für alle n [mm] \ge [/mm] N auch  [mm] max_{i\in\IN}|y_{n,i}-y_i| [/mm] < [mm] \varepsilon [/mm] gelten, denn es ist zwar der größte Wert, aber ab diesem N sind nunmal alle Abstände kleiner als epsilon.

Man kann daraus aber ja nicht folgern, dass [mm] sup\{|y_{n,i}-y_i|:i\in\IN\} [/mm] < [mm] \varepsilon [/mm] gilt, da das Supremum ja nicht unbedingt in dieser Menge enthalten sein muss, oder irre ich mich da? Man könnte diese Folgerung ja höchstens für die MAximumsnorm machen.



        
Bezug
Konvergenz in l unendlich: Antwort
Status: (Antwort) fertig Status 
Datum: 06:12 Fr 03.05.2013
Autor: fred97

Ich übersetze:

Zeige: aus der koordinatenweisen Konvergenz von [mm] (v_n) [/mm] gegen v folgt i.a. nicht, dass [mm] (v_n) [/mm] bezüglich $||* [mm] ||_{\infty} [/mm] $ gegen v konvergiert.

Also her mit einem Gegenbeispiel.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]