Konvergenz fast sicher < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:29 So 13.07.2008 | Autor: | kittie |
Aufgabe | Gilt [mm] \summe_{n=1}^{\infty} P(|X_n-X|>\epsilon) <\infty \forall \epsilon>0, [/mm] dann gilt [mm] X_n \to [/mm] X fast sicher. |
Hallo zusammen!
Hoffe jemand kann mir bei dieser Aufgabe weiterhelfen!
Kenne die Defition von fast sicherer Konvergenz, aber ich weiß hier nicht wie ich anzusetzen habe.
Haben Konvergenz fast sicher folgendermaßen definiert:
[mm] X_n \to [/mm] X fast sicher, falls eine Menge [mm] N\subset \Omega [/mm] existiert mit P(N)=0, sodass [mm] \forall \omega \notin [/mm] N gilt: [mm] X_n(\omega) \to X(\omega) [/mm] punktweise.
Komme hiermit aber leider nicht weiter!
Hoffe auf Hilfe!
liebe grüße, die kittie
|
|
|
|
> Gilt [mm]\summe_{n=1}^{\infty} P(|X_n-X|>\epsilon) <\infty \forall \epsilon>0,[/mm]
> dann gilt [mm]X_n \to[/mm] X fast sicher.
> Hallo zusammen!
>
> Hoffe jemand kann mir bei dieser Aufgabe weiterhelfen!
>
> Kenne die Defition von fast sicherer Konvergenz, aber ich
> weiß hier nicht wie ich anzusetzen habe.
> Haben Konvergenz fast sicher folgendermaßen definiert:
>
> [mm]X_n \to[/mm] X fast sicher, falls eine Menge [mm]N\subset \Omega[/mm]
> existiert mit P(N)=0,
Hier ist was kleines falsch: Du sollst ja zeigen, dass die Menge derjenigen [mm] $\omega$ [/mm] für die [mm] $X_n(\omega) \rightarrow X(\omega)$ [/mm] für [mm] $n\rightarrow\infty$ [/mm] gilt, die Wahrscheinlichkeit $1$ hat. Andernfalls könntest Du problemlos $N:= [mm] \emptyset$ [/mm] wählen Der Name $N$ für die Menge der [mm] $\omega$ [/mm] für die die [mm] $X_n(\omega)$ [/mm] gegen [mm] $X(\omega)$ [/mm] konvergieren ist auch sehr unglücklich gewählt (weil er auf Nullmenge anspielt).
> sodass [mm]\forall \omega \in[/mm] N gilt:
> [mm]X_n(\omega) \to X(\omega)[/mm] punktweise.
>
> Komme hiermit aber leider nicht weiter!
Aus der Voraussetzung, dass für alle [mm] $\varepsilon>0$ [/mm] gilt [mm] $\summe_{n=1}^{\infty} P(|X_n-X|>\epsilon) <\infty$ [/mm] kannst Du zum Beispiel schliessen, dass die Mengen [mm] $N_m [/mm] := [mm] \bigcap_{k\in\IN}\bigcup_{n\geq k}\{|X_n-X|>\frac{1}{m}\}$ [/mm] Nullmengen sein müssen. Daher ist auch deren Vereinigung $N:= [mm] \bigcup_{m\in\IN} N_m$ [/mm] eine Nullmenge. Auf dem Komplement $C := [mm] \Omega\backslash [/mm] N$ von $N$, mit $P(C)=1$, konvergieren aber die [mm] $X_n(\omega)$ [/mm] gegen [mm] $X(\omega)$.
[/mm]
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 13:05 So 13.07.2008 | Autor: | kittie |
Hallo, erstmal danke für die schnelle Antwort.
> Aus der Voraussetzung, dass für alle [mm]\varepsilon>0[/mm] gilt
> [mm]\summe_{n=1}^{\infty} P(|X_n-X|>\epsilon) <\infty[/mm] kannst Du
> zum Beispiel schliessen, dass die Mengen [mm]N_m := \bigcap_{k\in\IN}\bigcup_{n\geq k}\{|X_n-X|>\frac{1}{m}\}[/mm]
> Nullmengen sein müssen.
Das verstehe ich noch nicht, dass ich das daraus folgern kann..:(
>Daher ist auch deren Vereinigung
> [mm]N:= \bigcup_{m\in\IN} N_m[/mm] eine Nullmenge.
Das ist mir klar.
>Auf dem
> Komplement [mm]C := \Omega\backslash N[/mm] von [mm]N[/mm], mit [mm]P(C)=1[/mm],
> konvergieren aber die [mm]X_n(\omega)[/mm] gegen [mm]X(\omega)[/mm].
Habe ich leider auch noch nicht verstanden.Geschweige denn, wie ich das zeigen kann.
Hoffe, du hilfst mir nochmal!
liebe grüße
|
|
|
|
|
> Hallo, erstmal danke für die schnelle Antwort.
>
> > Aus der Voraussetzung, dass für alle [mm]\varepsilon>0[/mm] gilt
> > [mm]\summe_{n=1}^{\infty} P(|X_n-X|>\epsilon) <\infty[/mm] kannst Du
> > zum Beispiel schliessen, dass die Mengen [mm]N_m := \bigcap_{k\in\IN}\bigcup_{n\geq k}\{|X_n-X|>\frac{1}{m}\}[/mm]
> > Nullmengen sein müssen.
>
> Das verstehe ich noch nicht, dass ich das daraus folgern
> kann..:(
Um, kann sein, dass ich Unsinn geschrieben habe (wäre nicht das erste Mal )
Aber ich dachte, es gilt
[mm]\mathrm{P}\left(\bigcup_{n\geq k}\{|X_n-X|>\frac{1}{m}\}\right)\leq \sum\limits_{n\geq k} \mathrm{P}\left(|X_n-X|>\frac{1}{m}\right)\longrightarrow 0, \text{ für $k\rightarrow \infty$}[/mm]
Denn wenn die Reststücke der Reihe [mm] $\sum_{n=1}^{\infty} P(|X_n-X|>\epsilon)$, [/mm] mit [mm] $\varepsilon [/mm] := [mm] \frac{1}{m}$ [/mm] nicht gegen $0$ konvergieren, dann kann diese Reihe ja nicht [mm] $<\infty$ [/mm] sein. Da die Mengen [mm] $\bigcup_{n\geq k}\{|X_n-X|>\frac{1}{m}\}$ [/mm] für [mm] $k\rightarrow \infty$ [/mm] inklusionsmonoton fallen, ist doch
[mm]\mathrm{P}\left(\bigcap_{k\in\IN}\bigcup_{n\geq k}\{|X_n-X|>\frac{1}{m}\}\right)=\lim_{k\rightarrow\infty}\mathrm{P}\left(\bigcup_{n\geq k}\{|X_n-X|>\frac{1}{m}\}\right)=0[/mm]
Also, wie behauptet, [mm] $N_m$ [/mm] eine Nullmenge (für beliebiges [mm] $m\in \IN$).
[/mm]
>
> >Daher ist auch deren Vereinigung
> > [mm]N:= \bigcup_{m\in\IN} N_m[/mm] eine Nullmenge.
>
> Das ist mir klar.
>
> >Auf dem
> > Komplement [mm]C := \Omega\backslash N[/mm] von [mm]N[/mm], mit [mm]P(C)=1[/mm],
> > konvergieren aber die [mm]X_n(\omega)[/mm] gegen [mm]X(\omega)[/mm].
>
>
> Habe ich leider auch noch nicht verstanden.Geschweige denn,
> wie ich das zeigen kann.
Betrachte also ein [mm] $\omega\notin [/mm] N = [mm] \bigcup_{m\in\IN} \bigcap_{k\in\IN}\bigcup_{n\geq k}\{|X_n-X|>\frac{1}{m}\}$, [/mm] d.h. [mm] $\omega\in \bigcap_{m\in\IN}\bigcup_{k\in \IN}\bigcap_{n\geq k}\{|X_n-X|\red{\leq} \frac{1}{m}\}$ [/mm] (de Morgan). Kann man daraus nicht auf [mm] $|X_n(\omega)-X(\omega)|\rightarrow [/mm] 0$, für [mm] $n\rightarrow\infty$ [/mm] schliessen?
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:24 So 13.07.2008 | Autor: | kittie |
Alles klar den ersten Teil habe ich verstanden!
> Betrachte also ein [mm]\omega\notin N = \bigcup_{m\in\IN} \bigcap_{k\in\IN}\bigcup_{n\geq k}\{|X_n-X|>\frac{1}{m}\}[/mm],
> d.h. [mm]\omega\in \bigcap_{m\in\IN}\bigcup_{k\in \IN}\bigcap_{n\geq k}\{|X_n-X|\red{\leq} \frac{1}{m}\}[/mm]
> (de Morgan). Kann man daraus nicht auf
> [mm]|X_n(\omega)-X(\omega)|\rightarrow \infty[/mm], für
> [mm]n\rightarrow\infty[/mm] schliessen?
>
Aber ich muss doch jetzt noch zeigen, dass für alle [mm] \omega \notin [/mm] N gilt: [mm] \limes_{n\rightarrow\infty} X(\omega)=X(\omega) [/mm] ist(siehe Definition 1.post).
Das was du hier doch zuletzt geschieben hast, würde doch so wie es da steht keinen sinn machen, oder?
|
|
|
|
|
> Alles klar den ersten Teil habe ich verstanden!
>
> > Betrachte also ein [mm]\omega\notin N = \bigcup_{m\in\IN} \bigcap_{k\in\IN}\bigcup_{n\geq k}\{|X_n-X|>\frac{1}{m}\}[/mm],
> > d.h. [mm]\omega\in \bigcap_{m\in\IN}\bigcup_{k\in \IN}\bigcap_{n\geq k}\{|X_n-X|\red{\leq} \frac{1}{m}\}[/mm]
> > (de Morgan). Kann man daraus nicht auf
> > [mm]|X_n(\omega)-X(\omega)|\rightarrow \infty[/mm], für
> > [mm]n\rightarrow\infty[/mm] schliessen?
> >
> Aber ich muss doch jetzt noch zeigen, dass für alle [mm]\omega \notin[/mm]
> N gilt: [mm]\limes_{n\rightarrow\infty} X(\omega)=X(\omega)[/mm]
> ist(siehe Definition 1.post).
> Das was du hier doch zuletzt geschieben hast, würde doch
> so wie es da steht keinen sinn machen, oder?
Du hast Recht: ich hatte einen ganz blödsinnigen Tippfehler gemacht (ist inzwischen korrigiert). Ich hätte natürlich [mm] $|X_n(\omega)-X(\omega)|\rightarrow \red{0}$ [/mm] schreiben sollen. Weil [mm] $\omega\notin [/mm] N$ ist, gibt es also für jedes [mm] $m\in \IN$ [/mm] ein [mm] $k\in\IN$ [/mm] so dass für alle [mm] $n\geq [/mm] k$ gilt [mm] $|X_n(\omega)-X(\omega)|\leq \frac{1}{m}$. [/mm] Da man $m$ beliebig gross wählen kann, folgt [mm] $\lim_{n\rightarrow\infty}|X_n(\omega)-X(\omega)|=0$. [/mm] Dies ist äquivalent mit [mm] $\lim_{n\rightarrow\infty}X_n(\omega)=X(\omega)$.
[/mm]
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:34 So 13.07.2008 | Autor: | kittie |
Alles klar danke!
Jetzt hab ichs vollkommen verstanden!
Vielen Dank für die Mühe!
|
|
|
|