matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisKonvergenz eines unbest. Int.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Konvergenz eines unbest. Int.
Konvergenz eines unbest. Int. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz eines unbest. Int.: Frage
Status: (Frage) beantwortet Status 
Datum: 18:36 Mo 11.04.2005
Autor: steelscout

Hi,
ich sitze jetz schon seit Ewigkeiten an folgendem Problem:
Ich soll zeigen, dass - und für welche alpha - das unbestimmte Integral  [mm] \integral_{0}^{\infty} {\bruch{x^{\alpha}}{x^{2}+1} dx} [/mm] konvergiert.

Die einzige Möglichkeit, die ich dazu kenne, ist die Konvergenz der Reihe [mm] \summe_{n=0}^{\infty} \bruch{n^{\alpha}}{n^{2}+1} [/mm] nachzuweisen und damit auf die Konvergenz des Integrals zu schließen.
Gefühlsmäßig würd ich ja versuchen ne Majorante zu finden, aber da gingen bisher alle Versuche ins Leere. Da hab ich bisher höchstens
[mm] \summe_{n=0}^{\infty} \bruch{n^{\alpha}}{n^{2}+1}<\bruch{n^{\alpha}}{n^{2}}=\bruch{1}{n^{2-\alpha}}. [/mm] Wodurch Konvergenz bei [mm] 0<\alpha<1 [/mm] gegeben wäre. Bin mit damit allerdings nicht sicher und frage bei euch lieber noch einmal nach. ;)
Mit anderen Konvergenzkriterien (Wurzelkriterium etc.) kam ich auch nicht weit.
Ist das überhaupt der richtige Ansatz mit der Reihe?
Und wenn ja, gebt mir bitte nen kleinen Anstoß bzw. ne Bestätigung. :)

thx steele


Edit: Versuche noch die Formeln zum Funktionieren zu bringen...

        
Bezug
Konvergenz eines unbest. Int.: Antwort
Status: (Antwort) fertig Status 
Datum: 19:02 Mo 11.04.2005
Autor: Max

Hallo steelscout,


du kannst auch die Integrandenfunktion abschätzen. Wenn für $x [mm] \in[a;b] \Rightarrow 0\ge [/mm] f(x) [mm] \ge [/mm] g(x)$ gilt, dass [mm] $\int_a^b [/mm] f(x)dx [mm] \le \int_a^b [/mm] g(x)dx$. Also bei dir für [mm] $\alpha\neq [/mm] 1$:

[mm] $\int_0^{\infty} \frac{x^{\alpha}}{x^2+1}dx \le \int_0^{\infty} \frac{x^{\alpha}}{x^2}dx [/mm] = [mm] \int_0^{\infty} x^{\alpha-2}dx =\left[ \frac{1}{\alpha-1}x^{\alpha-1}\right]_0^{\infty} [/mm] = [mm] \lim_{r \to \infty} \frac{1}{\alpha-1}r^{\alpha-1}$ [/mm]

Damit konvergiert das Integral nur für [mm] $\alpha [/mm] < 1$.

Gruß Max

Bezug
                
Bezug
Konvergenz eines unbest. Int.: Existenz des Grenzwerts/Int.
Status: (Frage) beantwortet Status 
Datum: 22:42 Di 12.04.2005
Autor: steelscout

Hab es mir gerade noch einmal durchgesehn und mir ist aufgefallen, dass besagtes Integral für kein [mm] \alpha [/mm] existieren dürfte, denn
[mm] \left[ \frac{1}{\alpha-1}x^{\alpha-1}\right]_0^{\infty} [/mm] = [mm] \lim_{r \to \infty} \frac{1}{\alpha-1}r^{\alpha-1}-\bruch{0^{\alpha-1}}{\alpha-1} [/mm]
Ist nun [mm] \alpha [/mm] < 1 würde doch der zweite Bruch eine Division durch 0 ergeben und somit nicht existieren.
Und für [mm] \alpha [/mm] > 1 konvergiert es auch nicht, ebenson für [mm] \alpha=1, [/mm] oder?

Bezug
                        
Bezug
Konvergenz eines unbest. Int.: Antwort
Status: (Antwort) fertig Status 
Datum: 23:00 Di 12.04.2005
Autor: Max

Soweit ich weiß gilt [mm] $0^x=0$ [/mm] für [mm] $x\in\IR\setminus\{0\}$. [/mm]

Max

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]