matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisKonvergenz einer Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Konvergenz einer Reihe
Konvergenz einer Reihe < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer Reihe: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:23 Sa 10.09.2005
Autor: Cuchulainn

Hallo!

Folgende Reihe soll auf Konvergenz untersucht werden:

[mm] \summe_{k=1}^{ \infty} \bruch{3 * sin(2k)}{2k^3}. [/mm]

In meiner Lösung wird die Aufgabe folgendermaßen bearbeitet:
[mm] \summe_{k=1}^{n} |\bruch{3 * sin(2k)}{2k^3}| [/mm] =  [mm] \bruch{3}{2} [/mm] *  [mm] \summe_{k=1}^{n} \bruch{|sin(2k)|}{k^3} \le \bruch{3}{2} [/mm] *  [mm] \summe_{k=1}^{n} \bruch{1}{k^3} \le \bruch{3}{2} [/mm] *  [mm] \summe_{k=1}^{n} \bruch{1}{k^2}. [/mm]

Daraus folgt, dass die Reihe konvergent ist.
Die Rechenschritte sind mir klar, allerdings kann ich die Schlussfolgerung nicht nachvollziehen.

Vielen Dank.

P.S. Ich habe diese Frage auf keiner anderen Internetseite und in keinem anderen Forum gestellt.

        
Bezug
Konvergenz einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:06 Sa 10.09.2005
Autor: ze335

Hallo,

die Schlussfolgerung ergibt sich z.B. nach dem Majorantenkriterium für Reihen. D.h. deine Ursprungsreihe ist konvergent wenn es eine majorisierende Reihe mit [mm] |a_{n}| [/mm] <= [mm] b_{n} [/mm] für fast alle n [mm] \in [/mm] N gibt.
Nach dem Quotientenkriterium ist  [mm] \summe_{i=1}^{n} 1/k^{2} [/mm]  eine solche Reihe (d.h. | [mm] \bruch{a_{n+1}}{a_{n}}| [/mm] < 1 für fast alle n [mm] \in [/mm] N).

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]