matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisKonvergenz einer Funktionenfol
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Konvergenz einer Funktionenfol
Konvergenz einer Funktionenfol < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer Funktionenfol: Frage
Status: (Frage) beantwortet Status 
Datum: 09:20 Do 07.04.2005
Autor: Ernesto

Einen erfrischenden guten Morgen wünsche ich erstmal.

Nun zum ernst des Tages:

Wie kann ich beweisen, das die Funktionenfolge definiert mit:

                        fn : R [mm] \to [/mm]  R , x [mm] \mapsto [/mm] x / 1 + [mm] nx^2 [/mm]  

gleichmässig gegen die Nullfunktion konvergiert???

ich bedanke mich schon im vorraus

        
Bezug
Konvergenz einer Funktionenfol: Antwort
Status: (Antwort) fertig Status 
Datum: 10:02 Do 07.04.2005
Autor: Julius

Hallo!

Betrachte mal die Funktion [mm] $f_n$. [/mm]

Es gilt: [mm] $f_n(0)=0$ [/mm] und [mm] $\lim\limits_{x \to +\infty} f_n(x)=0=\lim\limits_{x \to -\infty} f_n(x)$. [/mm]

Zudem gilt: [mm] $f_n(x)>0$ [/mm] für alle $x [mm] \in (0,+\infty)$ [/mm] und [mm] $f_n(x)<0$ [/mm] für alle $x [mm] \in (-\infty,0)$. [/mm]

Es besteht also gute Hoffnung, [mm] $|f_n(x)|$ [/mm] für festens $n [mm] \in \IN$ [/mm] durch

[mm] $\max\{\max\{f_n(x)\, : \, x \in (0,+\infty)\}, -\min\{f_n(x)\, : \, x \in (-\infty,0)\}\}$ [/mm]

abzuschätzen (und dann anschließend den Grenzübergang für $n [mm] \to \infty$ [/mm] zu vollziehen).

Was musst du also tun?

Den Hoch-und Tiefpunkt von [mm] $f_n$ [/mm] finden und damit dann den Betrag von [mm] $f_n$ [/mm] abschätzen...

Viele Grüße
Julius



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]