matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz einer Folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Konvergenz einer Folge
Konvergenz einer Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:22 Mo 07.02.2011
Autor: nhard

Aufgabe
Untersuche

[mm] $a_n:=(n+1)^n-n^n$ [/mm]

auf Konvergenz.

So, nach einer Ewigkeit bin ich auf diesen Ansatz gekommen:

--
Nebenrechnung:

[mm] $(n+1)^n=\summe_{k=0}^{n}\bruch{n!}{(n-k)!\ k!}*n^k$ [/mm]

Für den Fall $k=n$ erhält man [mm] $n^n$ [/mm] und [mm] $n^k [/mm] > 1$.
Dann schätze ich das ganze so ab:
[mm] $\summe_{k=1}^{n}\bruch{n!}{(n-k)!\ k!}*n^k [/mm] > [mm] \left( \summe_{k=1}^{n-1}\bruch{n!}{(n-k)!\ k!}\right)+n^n [/mm] = [mm] 2^n+n^n$ [/mm]
--
Dann bekomme ich:

[mm] $(n+1)^n-n^n\ [/mm] >\ [mm] 2^n+n^n-n^n=2^n$ [/mm]

Da [mm] $\limes_{n\rightarrow\infty} 2^n=\infty$ [/mm]
divergiert auch die Folge [mm] $(n+1)^n-n^n$. [/mm]

Ist die Argumentation so richtig, also auch richtig begründet?
Muss ich jetzt noch zeigen, dass meine Folge monton steigt oder kann man das als offensichtlich ansehen?

Vielen Dank und lg!!


        
Bezug
Konvergenz einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 12:29 Mo 07.02.2011
Autor: fred97


> Untersuche
>  
> [mm]a_n:=(n+1)^n-n^n[/mm]
>
> auf Konvergenz.
>  So, nach einer Ewigkeit bin ich auf diesen Ansatz
> gekommen:
>  
> --
>  Nebenrechnung:
>  
> [mm](n+1)^n=\summe_{k=0}^{n}\bruch{n!}{(n-k)!\ k!}*n^k[/mm]
>  
> Für den Fall [mm]k=n[/mm] erhält man [mm]n^n[/mm] und [mm]n^k > 1[/mm].
>  Dann
> schätze ich das ganze so ab:
>  [mm]\summe_{k=1}^{n}\bruch{n!}{(n-k)!\ k!}*n^k > \left( \summe_{k=1}^{n-1}\bruch{n!}{(n-k)!\ k!}\right)+n^n = 2^n+n^n[/mm]



In beiden Summen oben, sollt die Summation mit k=0 beginnen

>  
> --
>  Dann bekomme ich:
>  
> [mm](n+1)^n-n^n\ >\ 2^n+n^n-n^n=2^n[/mm]
>  
> Da [mm]\limes_{n\rightarrow\infty} 2^n=\infty[/mm]
>  divergiert auch
> die Folge [mm](n+1)^n-n^n[/mm].
>  
> Ist die Argumentation so richtig, also auch richtig
> begründet?

Alles O.k.

FRED

>  Muss ich jetzt noch zeigen, dass meine Folge monton steigt
> oder kann man das als offensichtlich ansehen?
>  
> Vielen Dank und lg!!
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]