matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz einer Folge+
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Konvergenz einer Folge+
Konvergenz einer Folge+ < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer Folge+: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:34 So 25.11.2012
Autor: Arkathor

Aufgabe
Sei [mm] a_n [/mm] eine reeller Zahlen Folge die gegen a konvegiert. Zeigen sie, dass [mm] b_n:=\frac{1}{n}(a_1+a_2+...+a_n) [/mm] ebenfalls gegen a konvegiert. Gilt die Umkehrung der Aussage auch? Wenn [mm] b_n [/mm] gegen a konvegiert, kovegiert auch [mm] a_n [/mm] gegen a?


Ich habe ein Problem mit dieser Aufgabe, nämlich ich komme, dass es gegen Null konvegieren soll. nämlich es gibt ein Satz der sagt [mm] a_n\rightarrow [/mm] a und [mm] b_n\rightarrow [/mm] b [mm] \implies a_n b_n \rightarrow [/mm] ab Und b kann man aufschreiben als Summe zwei Folgen:
[mm] c_n=\frac{1}{n} [/mm] //konvegiert gegen 0
[mm] d_n=der [/mm] Rest. //konvegiert gegen [mm] a\in\IR [/mm]
a*0=0 So soll b gegen Null konvegieren. Kann mir jemand sagen was falsch in diesem Schlussfolgerung ist und einen richtigen Ansatz geben? (ich hab's versucht die Definitionen der Konvergenz aufzuschreiben, hat aber mir nicht's gebracht: [mm] \forall\epsilon [/mm] : [mm] \exists n_0 \forall [/mm] n : [mm] n\ge n_0 [/mm] : [mm] |a_n|<\epsilon) [/mm]

        
Bezug
Konvergenz einer Folge+: Antwort
Status: (Antwort) fertig Status 
Datum: 15:03 So 25.11.2012
Autor: Marcel

Hallo,

> Sei [mm]a_n[/mm] eine reeller Zahlen Folge die gegen a konvegiert.
> Zeigen sie, dass [mm]b_n:=\frac{1}{n}(a_1+a_2+...+a_n)[/mm]
> ebenfalls gegen a konvegiert. Gilt die Umkehrung der
> Aussage auch? Wenn [mm]b_n[/mm] gegen a konvegiert, kovegiert auch
> [mm]a_n[/mm] gegen a?
>  Ich habe ein Problem mit dieser Aufgabe, nämlich ich
> komme, dass es gegen Null konvegieren soll. nämlich es
> gibt ein Satz der sagt [mm]a_n\rightarrow[/mm] a und [mm]b_n\rightarrow[/mm]
> b [mm]\implies a_n b_n \rightarrow[/mm] ab Und b kann man
> aufschreiben als Summe zwei Folgen:
> [mm]c_n=\frac{1}{n}[/mm] //konvegiert gegen 0
>  [mm]d_n=der[/mm] Rest. //konvegiert gegen [mm]a\in\IR[/mm]
>  a*0=0 So soll b gegen Null konvegieren. Kann mir jemand
> sagen was falsch in diesem Schlussfolgerung ist und einen
> richtigen Ansatz geben? (ich hab's versucht die
> Definitionen der Konvergenz aufzuschreiben, hat aber mir
> nicht's gebracht: [mm]\forall\epsilon[/mm] : [mm]\exists n_0 \forall[/mm] n :
> [mm]n\ge n_0[/mm] : [mm]|a_n|<\epsilon)[/mm]  

nun ja: Wenn jedes [mm] $b_n\,$ [/mm] eine Summe von [mm] $k\,$ [/mm] Summanden wäre,
wobei [mm] $k\,$ [/mm] von [mm] $n\,$ [/mm] unabhängig bzw. FEST wäre, dann könntest Du so
folgern, wie Du es wolltest (mit dem Zusatz, dass natürlich jeder der [mm] $k\,$ [/mm]
Summanden quasi eine konvergente Folge in [mm] $n\,$ [/mm] "vertrete").

Aber [mm] $b_n\,$ [/mm] hat für [mm] $n=1\,$ [/mm]  EINEN Summanden, für [mm] $n=10\,$ [/mm] aber
ZEHN Summanden, für $n=1000$ halt TAUSEND Summanden...

Also vielleicht mal genauer: Ist [mm] $\tilde{b}_n=\sum_{\ell=1}^\red{k} \tilde{a}_\ell(n)$ [/mm] mit
$k [mm] \in \IN$ [/mm] fest, dann folgt, falls [mm] $\tilde{a}_\ell(n) \to \tilde{a}_\ell$ [/mm] ($n [mm] \to \infty$) [/mm] für [mm] $\ell=1,...,k$ [/mm] gilt, dass
[mm] $$\tilde{b}_n \to \sum_{\ell=1}^\red{k}\tilde{a}_\ell\;\;\;(n \to\infty)\,.$$ [/mm]

Das funktioniert bei Dir hier halt nicht, weil hier [mm] $k\,$ [/mm] eben NICHT von [mm] $n\,$ [/mm]
unabhängig ist.

Nun zum Beweis bei Deiner Aufgabe:
Sei [mm] $\epsilon [/mm] > [mm] 0\,.$ [/mm] Dann gibt es ein [mm] $N=N(\epsilon)$ [/mm] so, dass [mm] $|a_n-a| [/mm] < [mm] \epsilon$ [/mm]
für alle $n [mm] \ge N\,.$ [/mm]

Begründe nun
[mm] $$b_n-a=\frac{1}{n}\sum_{k=1}^n (a_k-a)$$ [/mm]
und folgere damit, dass für alle $n [mm] \ge [/mm] N$ gilt
[mm] $$|b_n-a| \le \frac{1}{n}\underbrace{\sum_{k=1}^N |a_k-a|}_{=:S_1}+\frac{1}{n}\underbrace{\sum_{k=N+1}^n |a_k-a|}_{=:S_2=S_2(n)}$$ [/mm]

Zeige: [mm] $|b_n-a| \le 2*\epsilon$ [/mm] für alle genügend großen [mm] $n\,.$ [/mm]
(Tipp: Beachte, dass [mm] $S_1$ [/mm] nicht von [mm] $n\,$ [/mm] abhängt - und benutze [mm] $|a_k-a| [/mm] < [mm] \epsilon$ [/mm]
für alle $k [mm] \ge N\,,$ [/mm] um [mm] $S_2$ [/mm] abzuschätzen.)

Und zur Frage bzgl. der Umkehrung: Betrachte mal [mm] $a_n:=(-1)^n\,.$ [/mm]
Zeige: Dann gilt [mm] $b_n \to 0\,,$ [/mm] aber [mm] $(a_n)_n=((-1)^n)_n$ [/mm] divergiert!

P.S.
Das, was Du oben geschrieben hast ("... die Definition der Konvergenz
aufzuschreiben..."):
"Für alle [mm] $\epsilon [/mm] > 0$ gilt: Es gibt ein [mm] $n_0=n_0(\epsilon)$ [/mm] so, das für
alle $n [mm] \ge n_0$ [/mm] folgt: [mm] $|a_n| [/mm] < [mm] \epsilon$" [/mm]
passt nur, falls die Folge eine GEGEN NULL konvergente Folge ist.

Richtig ist:
Sei [mm] $(a_n)_n$ [/mm] eine Folge. Genau dann ist [mm] $(a_n)_n$ [/mm] konvergent, wenn
gilt:
Es gibt ein [mm] $a\,$ [/mm] so, dass für alle [mm] $\epsilon [/mm] > 0$ ein [mm] $n_0=n_0(\epsilon)$ [/mm]
so existiert, dass für alle $n [mm] \ge n_0$ [/mm] gilt: [mm] $|a_n-a| [/mm] < [mm] \epsilon\,.$ [/mm]
(Beachte auch die Reihenfolge: "Es gibt ein [mm] $a\,$ [/mm] so, dass für jedes
[mm] $\epsilon [/mm] > 0$..." und NICHT "Für jedes [mm] $\epsilon [/mm] > 0$ gibt es ein [mm] $a\,$ [/mm]
so...."
Wobei man hier im Forum auch mal die letztere Formulierung behandelt hat
und gezeigt hat, dass sie in [mm] $\IR$ [/mm] (oder [mm] $\IC$) [/mm] eine äquivalente Definition
wäre. Aber sie wäre 'umständlich(er)'...)

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]