matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz beweisen.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Konvergenz beweisen.
Konvergenz beweisen. < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz beweisen.: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:48 Mi 17.10.2012
Autor: Mlulz

Aufgabe
Beweise das die folgende Sequenz konvergent ist und finde ihren Grenzwert.
[mm] \wurzel{2}, \wurzel{2+\wurzel{2}},..... [/mm]



also nach mir ist das dann ja
[mm] \summe_{n=1}^{k}2^\bruch{1}{2}^k [/mm] mit k [mm] \in \IZ [/mm]
aber das konvergiert ja nicht weil sich [mm] 2^\bruch{1}{2}^n [/mm] an 1 annähert und dadurch mit genug hohem k stets 1 dazu addiert wird es ergo keine oberen Grenzwert gibt?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenz beweisen.: Antwort
Status: (Antwort) fertig Status 
Datum: 21:24 Mi 17.10.2012
Autor: rainerS

Hallo!

> Beweise das die folgende Sequenz konvergent ist und finde
> ihren Grenzwert.
> [mm]\wurzel{2}, \wurzel{2+\wurzel{2}},.....[/mm]
>  
> also nach mir ist das dann ja
> [mm]\summe_{n=1}^{k}2^\bruch{1}{2}^k[/mm] mit k [mm]\in \IZ[/mm]

Nein.

Gemeint ist die Folge

[mm]a_1=\wurzel{2}[/mm], [mm] a_{n+1} = \wurzel{\vphantom{\|}2+a_n} [/mm], [mm] $n\in\IN$. [/mm]

Tipp: Zeige, dass diese Folge monton und beschränkt ist.

Viele Grüße
   Rainer

Bezug
        
Bezug
Konvergenz beweisen.: Anschauliche Lösung
Status: (Antwort) fertig Status 
Datum: 23:01 Mi 17.10.2012
Autor: franzzink

Hallo Mlulz,

> Beweise das die folgende Sequenz konvergent ist und finde
> ihren Grenzwert.
> [mm]\wurzel{2}, \wurzel{2+\wurzel{2}},.....[/mm]

mit Hilfe der Beziehung für den halben Winkel  [mm] $\cos \bruch{x}{2}=\pm \wurzel{\bruch{1}{2}(1+ \cos x)}$ [/mm] (Im 1. Quadranten gilt "+".) und ausgehend von [mm] $\cos \bruch{\pi}{4} [/mm] = [mm] \bruch{\wurzel{2}}{2}$ [/mm] kann man zeigen:

$ [mm] \wurzel{2} [/mm] = 2 [mm] \cos \bruch{\pi}{4}$ [/mm]
$ [mm] \wurzel{2+\wurzel{2}} [/mm] = 2 [mm] \cos \bruch{\pi}{8} [/mm] $
$ [mm] \wurzel{2+\wurzel{2+\wurzel{2}}} [/mm] = 2 [mm] \cos \bruch{\pi}{16} [/mm] $
usw.

(Dies kann man sich auch sehr anschaulich am Einheitskreis ausgehend vom Winkel [mm] \bruch{\pi}{4} [/mm] mit Hilfe des Kosinussatzes überlegen, indem man den Winkel immer weiter halbiert.)

Der gesuchte Grenzwert ist somit:   [mm] $\limes_{n\rightarrow\infty} [/mm] 2 [mm] \cos \bruch{\pi}{2^{n+1}}$ [/mm]

Schöne Grüße
franzzink

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]