matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationKonvergenz beim Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integration" - Konvergenz beim Integral
Konvergenz beim Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz beim Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:59 So 25.10.2009
Autor: YesWeCan

Aufgabe
Für welche k [mm] \in \IN [/mm] konvergiert das unbestimmte Integral [mm] \integral_{1}^{\infty}{\bruch{x^2+3}{(2x+2)x^k}} [/mm]

Hallo,
habe kein Plan was von mir eigentlich gefragt ist....
muss ich erst integrieren, dann Konv.Rad. und den darausschließenden Konv.Bereich berechnen?

Bringt das Licht in die Dunkelheit!

Alex

        
Bezug
Konvergenz beim Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 15:29 So 25.10.2009
Autor: abakus


> Für welche k [mm]\in \IN[/mm] konvergiert das unbestimmte Integral
> [mm]\integral_{1}^{\infty}{\bruch{x^2+3}{(2x+2)x^k}}[/mm]
>  Hallo,
>  habe kein Plan was von mir eigentlich gefragt ist....
>  muss ich erst integrieren, dann Konv.Rad. und den
> darausschließenden Konv.Bereich berechnen?
>  
> Bringt das Licht in die Dunkelheit!
>  
> Alex

Hallo,
für k=0 gehen für x gegen unendlich die Funktionswerte ebenfalls gegen unendlich. Mit dem Hinausschieben der oberen Intervallgrenze wächst also das Integral immer stärker und konvergiert somit nicht.
Für k=1 gehen für große x die Werte von [mm] \bruch{x^2+3}{(2x+2)x^k} [/mm] gegen  0,5.  Das Integral wächst damit beim Hinausschieben der Grenzen nahezu konstant an (auch keine Konvergenz).
Für k=2 konvergieren zwar die x-Werte gegen Null, das Integral wächst trotzdem (zwar langsam, aber unaufhaltsam).
Das Ganze läuft sicher auf eine Abschätzung hinaus (man sollte wissen, dass  
[mm] \integral_{1}^{\infty}{\bruch{1}{x}} [/mm] noch divergiert,
[mm] \integral_{1}^{\infty}{\bruch{1}{x^2}} [/mm] hingegen konvergiert).
Gruß Abakus


Bezug
                
Bezug
Konvergenz beim Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:06 So 25.10.2009
Autor: YesWeCan

die Logik habe ich verstanden aber kann man die Aufgabe nur durch probieren und abschätzen bewältigen?
Kein Verfahren?

Bezug
                        
Bezug
Konvergenz beim Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 18:46 So 25.10.2009
Autor: weightgainer

Hallo YesWeCan,

der Vorschlag ist zumindest der günstigste.
Du kannst aber "ohne weiteres" eine Stammfunktion für ein beliebiges k ausrechnen und mit dieser Stammfunktion dann argumentieren. Nur sieht diese Stammfunktion nicht schön aus und lässt sich nicht schön analysieren. Und da letztlich um die gleiche Fallunterscheidung nicht herumkommst, würde ich den sehr guten Hinweis von abakus umsetzen. Rein logisch ist der Weg dann nicht sehr viel anders wie der über die Stammfunktion.

Gruß,
Martin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]