matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikKonvergenz Zufallsvariablen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Konvergenz Zufallsvariablen
Konvergenz Zufallsvariablen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz Zufallsvariablen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:16 Mo 14.11.2011
Autor: Faithless

Aufgabe
Es seien [mm] X_n, [/mm] X, [mm] Y_n [/mm] und Y [mm] \IR^d-wertige [/mm] Zufallsvariablen, mit
[mm] X_n \to [/mm] X, [mm] Y_n \to [/mm] Y, jeweils in Verteilung für n [mm] \to \infty [/mm]
Außerdem sei für jedes n [mm] \in \IN x_n [/mm] unabhängig von [mm] Y_n [/mm] und X unabhängig von Y. Zeigen Sie: Für n [mm] \to \infty [/mm] gilt
a) [mm] (X_n, Y_n) \to [/mm] (X,Y)
b) [mm] (X_n, X_n) \to [/mm] (X,X)

Hinweis: Stetigkeitssatz von Lévy

also zuerst mal hab ich grad keine Ahnung, welche Konvergenz da überhaupt zu zeigen ist. das is die erste frage :D

allerdings hilft mir die antwort wahrscheinlich auch nicht weiter, einen gescheiten ansatz zu finden.
ich hab überlegt die charakteristische funktion [mm] \phi_{(X_n,Y_n)} [/mm] (sollte eigentlich ein kleines phi sein, aber find ich grad nicht) zu gehen, klingt ja auch sinnvoll mit dem hinweis, aber was tu ich damit dann?
feststellen, dass die charakteristische funktion für n [mm] \to \infty [/mm] gegen die von (X,Y) konvergiert?

oder bin ich da grad komplett auf dem holzweg?

ich hoffe mal da steigt einer durch was ich meine :D
danke schonmal

        
Bezug
Konvergenz Zufallsvariablen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:40 Mo 14.11.2011
Autor: Fry

Hey,

würde sagen, dass das genau der richtige Weg ist.
Zu a):
[mm]\phi_{(X_n,Y_n)}(s,t)=\int e^{i(s,t)\bullet(X_n,Y_n)}dP=\int e^{isX_n+itY_n}dP=\phi_{sX_n+tY_n}(1)[/mm]


Damit brichst du den mehrdimensionalen Fall auf den eindimensionalen runter.


Nun gilt, da die [mm] $X_n$ [/mm] und [mm] $Y_n$ [/mm] und $X$,$Y$ unabhängig sind, gilt
[mm]sX_n+tY_n\overset{d}{\longrightarrow}sX+tY[/mm] und damit nach dem Stetigkeitssatz von Lèvy


[mm]\phi_{sX_n+tY_n}(1)\overset{n\to\infty}{\longrightarrow}\phi_{sX+tY}(1)[/mm]


Jetzt nur noch die selben Umformungen von oben rückwärts machen und dann erneut Stetigkeitssatz von Levy benutzen.


VG
Fry


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]