Konvergenz Funktionsfolge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe 1 | [mm] f_{n}: [/mm] [0,1] [mm] \to \IR [/mm] mit n [mm] \in \IN [/mm] sei gegeben durch
[mm] f_{n}: [/mm] n(n+1), für [mm] x\in [\bruch{1}{n+1}, \bruch{1}{n}] [/mm] &
0, sonst
zeigen sie das [mm] f_{n} [/mm] punktweise gegen eine Funktion [mm] f:[0,1]\to \IR [/mm] konvergiert und entscheiden Sie, ob diese Konvergernz gleichmüssig ist. |
Aufgabe 2 | Gilt die Gleichung
[mm] \limes_{n\rightarrow\infty}\integral_{0}^{1}{f_{n}(x) dx} =\integral_{0}^{1}{}\limes_{n\rightarrow\infty}f_{n}(x) [/mm] dx |
Ahoi,
wenn man beachtet das [mm] \limes_{n\rightarrow\infty}f_{n}(x)=f(x) [/mm] sein soll, dann wird ja diese Funktion zuenehmend 0 (wegen der Intervallsgrenzen) bis auf diesen einen Punkt zwischen [mm] \bruch{1}{n+1}, \bruch{1}{n} [/mm] der zunehmend gegen unendlich geht.
Mein Problem ist wie man daraus zeigt das es punktweise konvergenz ist. Oder wie jetzt genau f(x) aussieht. Bei grober betrachtung ist dies ja 0. Und für die gleichmässige Konvergenz wäre wieder [mm] \limes_{n\rightarrow\infty}|f_{n}(x)-0|. [/mm] Und ich hätte eine gleichmäßige Konvergenz in jeden Punkt bis auf [mm] [\bruch{1}{n+1}, \bruch{1}{n}]. [/mm] Das kommt mir aber auch ziemlich spanisch vor.
Bei der zweiten Aufgabe, war ich mir nicht sicher mit den Bedingungen die ich einhalten muss damit ich den Limes einsetzen kann. Ich kann den ja reinziehen wenn die Funktion einen Grenzwert hat. Aber so gesehen habe ich den ja auch nicht.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:20 Mi 09.05.2012 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|