matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Konvergenz
Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: Reihen
Status: (Frage) beantwortet Status 
Datum: 23:02 Mi 12.10.2011
Autor: Elektro21

Aufgabe
Untersuchen Sie die nachstehenden Reihen auf Konvergenz und berechnen Sie gegebenenfalls den
Grenzwert.

[mm] \summe_{n=1}^{unendlich} \bruch{n}{(n+1)*(n+2)} [/mm]

Wäre schön wenn mir jemand helfen könnte.

Ich hab die frage nirgendwo gestellt.

        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 23:24 Mi 12.10.2011
Autor: Schadowmaster

moin,

Kennst du Partialbruchzerlegung?
Suche dir mal Zahlen a,b, sodass gilt:
[mm] $\frac{n}{(n+1)(n+2)} [/mm] = [mm] \frac{a}{n+1} [/mm] + [mm] \frac{b}{n+2}$ [/mm]

Löst du das kriegst du hier zwei sogar schön glatte Werte für a und b raus.

Versuch mal dann deine neue Reihe auf Konvergenz zu überprüfen (Tipp: schätze sie geschickt ab).
Du kannst vielleicht auch ohne Partialbruchzerlegung, bei der Reihe in der jetzigen Form, mit einer geschickten Abschätzung zum Ziel kommen, aber ich finde wenn man das in eine Summe von zwei Brüchen zerlegt fällt das Abschätzen doch deutlich leichter.

(ggf. musst du ein paar Elemente aus der Summe rausziehen oder ein wenig mit dem Index rumspielen, um tatsächlich mit dem gewünschten Ziel abzuschätzen, aber das schaffst du schon ;) )


lg

Schadow

Bezug
                
Bezug
Konvergenz: reihen
Status: (Frage) beantwortet Status 
Datum: 23:34 Mi 12.10.2011
Autor: Elektro21

PBZ fällt mir ein wenig schwer.
Gibt es einen anderen Weg?

Bezug
                        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 23:48 Mi 12.10.2011
Autor: Schadowmaster

Wie gesagt, abschätzen.
Ob du die Reihe in deiner Form abgeschätzt kriegst ist so die Frage, aber...^^
Zur PBZ:
Wenn der Nenner (wie hier) so schön faktorisiert ist schreibst du halt einzelne Brüche als Summe hin, wie ich es oben gemacht habe.
Also es wird erst einmal angenommen es gibt a und b, die folgende Gleichung lösen:
$ [mm] \frac{n}{(n+1)(n+2)} [/mm] = [mm] \frac{a}{n+1} [/mm] + [mm] \frac{b}{n+2} [/mm] $

Erweitert man nun mit dem Hauptnenner (der auf beiden Seiten gleich ist, deshalb ist es ja so wichtig, dass er sich faktorisieren lässt) steht da:
n = a(n+2) + b(n+1)  [mm] $\gdw$ [/mm]
n = an + 2a +bn + b [mm] $\gdw$ [/mm]
n = (a+b)n + (2a+b)

Nun werden die Vorfaktoren verglichen.
Denn egal wie oft du Zahlen addierst, du wirst nie ein n rauskriegen.
Es muss also gelten: n= (a+b)n, somit also:
a+b = 1

Weiterhin muss der zweite Teil 0 werden, also:
2a+b = 0

hättest du hier noch ein [mm] $n^2$ [/mm] im Term so müsstest du auch dieses ausklammern und hier entsprechend die Vorfaktoren betrachten, denn egal wie oft man n aufaddiert, man kommt doch nie auf [mm] $n^2$. [/mm]

In diesem Fall hast du also folgendes LGS zu lösen:
a+b = 1
2a + b = 0

Das dürfte nicht all zu viele Probleme machen, Lösung ist:
a = -1, b = 2

Die Partialbruchzerlegung sieht ein wenig böse aus, ja, aber sie ist an sich garnicht so schwer.

Nun hast du also als neue Reihe:

[mm] $\summe_{n=1}^{\infty} \frac{-1}{n+1} [/mm] + [mm] \frac{2}{n+2}$ [/mm]

Das riecht ja schon stark nach harmonischer Reihe, also guck mal ob du es schaffst diese Reihe nach unten mit der harmonischen Reihe abzuschätzen.


lg

Schadow

Bezug
                                
Bezug
Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:03 Do 13.10.2011
Autor: Elektro21

Kannst du mir erklären wie du auf das hier:

n = (a+b)n + (2a+b)
GEKOMMEN bIST:

Konnte das hier nicht nachvollziehen.

Bezug
                                        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 12:12 Do 13.10.2011
Autor: schachuzipus

Hallo Elektro21,


> Kannst du mir erklären wie du auf das hier:
>  
> n = (a+b)n + (2a+b)
>  GEKOMMEN bIST:
>  
> Konnte das hier nicht nachvollziehen.

Das ist ein Vergleich der Zähler linkerhand und rechterhand nach dem Erweitern.

Da steht doch nach dem Erweitern [mm]\frac{n}{(n+1)(n+2)}=\frac{a(n+2)+b(n+1)}{(n+1)(n+2)}[/mm]

Rechterhand den Zähler noch zusammengefasst und dann mit dem linkerhand verglichen. (Beachte: linkerhand steht [mm]n=\red{1}\cdot{}n+\blue{0}[/mm])

Das nennt sich Koeffizientenvergleich.

Das ganze Gedöhns mit PBZ brauchst du aber doch hier für die Konvergenzuntersuchung der Reihe [mm]\sum\limits_{n=1}^{\infty}\frac{n}{(n+1)(n+2)}[/mm]

Die Reihe ist doch von der Größenordnung [mm]\sum\frac{1}{n}[/mm], und das ist die bekannteste divergente Reihe überhaupt, die .....

Schätze also deine Ausgangsreihe gegen eine divergente Minorante, also eine kleinere divergente Reihe der Form [mm]M\cdot{}\sum\frac{1}{n}[/mm] ab.

Das ist eine Standardaufgabe für das Vergleichskriterium (Majoranten-/Minorantenkriterium) für die Konvergenzuntersuchung von Reihen

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]