Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | [mm] \limes_{k\rightarrow\infty} [/mm] [mm] \left| \bruch{k+\bruch{1}{2^k}}{k+1+\bruch{2}{2^k}} \right| [/mm] |
Schönen guten Abend zusammen!
Ich würde gerne wissen, ob ich einfach "behaupten" kann, dass [mm] \bruch{1}{2^k} [/mm] und [mm] \bruch{2}{2^k} [/mm] gegen null gehen...
ansonsten, wüsste ich nicht, wie ich die konvergenz zeigen, oder nicht zeigen sollte...
gruß rainer
|
|
|
|
Hallo Rainer,
jo, anschaulich ist es ja klar, dass [mm] $\frac{1}{2^k}$ [/mm] und [mm] $\frac{2}{2^k}$ [/mm] gegen $0$ konvergieren für [mm] $k\to\infty$
[/mm]
Es sind ja im Zähler 1 bzw. 2 konstant und im Nenner ist [mm] $(2^k)_{k\in\IN}$ [/mm] eine streng monoton wachsende Folge, die gegen [mm] $\infty$ [/mm] divergiert..
Das kannst du auch kurz beweisen, wenn es nicht ganz klar oder ersichtlich ist:
Einfach die [mm] $\varepsilon$-Definition [/mm] für GW benutzen.
Finde zu beliebigem [mm] $\varepsilon>0$ [/mm] ein [mm] $K_0\in\IN$, [/mm] so dass für alle [mm] $k\ge K_0$ [/mm] gilt: [mm] $\left|\frac{1}{2^k}-0\right|=\left|\frac{1}{2^k}\right|=\frac{1}{2^k}<\varepsilon$
[/mm]
Den Fall [mm] $\frac{2}{2^k}$ [/mm] kannst du auf den Fall [mm] $2\cdot{}\frac{1}{2^k}$ [/mm] zurückführen oder es schreiben als [mm] $\frac{2}{2^k}=\frac{1}{2^{k-1}}$ [/mm] und analog verarzten..
Gruß
schachuzipus
|
|
|
|