Konvergenz < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:35 So 06.04.2008 | Autor: | blueeyes |
Aufgabe | Für welche Werte von [mm] \alpha> [/mm] 0 konvergiert das Integral [mm] \integral_{o}^{\pi}\bruch{1}{sin(x)^\alpha}dx?
[/mm]
Tipp: Zeigen Sie zunächst, dass es ein [mm] \delta> [/mm] 0 gibt, so dass [mm] sin(x)\ge\bruch{1}{2}x [/mm] für [mm] 0\le x\le\delta. [/mm] Beweisen Sie eine analoge Ungleichung für Punkte in der Nähe von [mm] \pi. [/mm] |
Gibt es hier vllt. nen Kniff, wie man am besten auf diese Werte von [mm] \alpha [/mm] kommen könnte? Lg
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:10 So 06.04.2008 | Autor: | blueeyes |
Ich weiß zwar,dass:
[mm] sin\alpha=\bruch{1}{2}\wurzel{x} [/mm] mit [mm] \alpha=0, [/mm] 30, 45, 60, [mm] 90^\circ [/mm] ist x = 0, 1, 2, 3, [mm] 4\, [/mm] aber so wirklich weiterbringen tut mich das alles nicht.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:28 So 06.04.2008 | Autor: | leduart |
Hallo
Zu deiner Mitteilung:1. man kann x nicht als Winkel im Gradmass ausdrücken,
2. deine gleichung ist auch auf jeden Fall falsch.
Beachte das sinx bei 0 die Steigung 1 bei [mm] \pi [/mm] die Steigung -1 hat.
Dann überlege erstmal für welche [mm] \alpha [/mm] das sicher divergiert!
In der Nähe von 0 ist [mm] sinx\approx [/mm] x!
Gruss leduart
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:44 Mo 07.04.2008 | Autor: | Loddar |
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Hallo blueeyes!
Beachte mal die Tipps der Aufgabenstellung bzw. von leduart und vergleiche Dein Integral mit $\integral_0^{\pi}\bruch{1}{x^{\alpha}} \ dx}$ .
Gruß
Loddar
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:12 Mo 07.04.2008 | Autor: | Marcel |
Hallo,
ein Tipp zu der ersten Ungleichung im Tipp:
> Tipp: Zeigen Sie zunächst, dass es ein [mm]\delta>[/mm] 0 gibt, so
> dass [mm]sin(x)\ge\bruch{1}{2}x[/mm] für [mm]0\le x\le\delta.[/mm]
Du hast zu zeigen, dass es ein [mm] $\delta [/mm] > 0$ so gibt, dass [mm] $\sin(x) \ge \frac{1}{2}*x$ [/mm] auf [mm] $[0,\delta]$. [/mm] Wenn Dir bekannt ist oder Du beweisen kannst, dass die Einschränkung von $x [mm] \mapsto \sin(x)$ [/mm] auf [mm] $\left[0,\frac{\pi}{2}\right]$ [/mm] konkav ist, dann schau Dir mal folgendes Schaubild an (die Graphen von $x [mm] \mapsto \sin(x)$ [/mm] und $x [mm] \mapsto \frac{1}{2}*x$) [/mm] und überlege Dir, was man da erkennt, wie man für obige Ungleichung argumentieren kann (insbesondere, welche [mm] $\delta [/mm] > 0$ überhaupt geeignet sind, solltest Du erkennen):
[Dateianhang nicht öffentlich]
Ansonsten kannst Du die Ungleichung auch umformen zu [mm] $\sin(x)-\frac{1}{2}*x \ge [/mm] 0$, und wenn Du Dir folgendes Schaubild anguckst (der Graph von [mm] $f(x)=\sin(x)-\frac{1}{2}*x$), [/mm] solltest Du dafür auch eine Idee haben, wie man es beweisen kann:
[Dateianhang nicht öffentlich]
Falls ihr noch keine Differentialrechnung etc. benutzen dürft, dann müsstest Du uns ggf. noch mitteilen, welche Abschätzung für den Sinus ihr habt, wie ihr ihn definiert habt bzw. ob die Reihenentwicklung bekannt ist etc.
Gruß,
Marcel
Dateianhänge: Anhang Nr. 1 (Typ: jpg) [nicht öffentlich] Anhang Nr. 2 (Typ: jpg) [nicht öffentlich]
|
|
|
|
|
Könntet ihr sagen wie man dieses [mm] \delta>0 [/mm] dort ablesen kann? Vielleicht [mm] \delta [/mm] von 0 bis schätzungsweise 1,8?(also bis zum Schnittpunkt der beiden Funktionen)
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:09 Di 08.04.2008 | Autor: | leduart |
Hallo
für ein [mm] \delta [/mm] kommt es ja nicht drauf an, dass es das größt mögliche ist, die hauptsache du hast eins, wofür die Ungl stimmt. also nach Zeichng, etwa sichr [mm] \delta=0,5 [/mm] oder 0,2!
wichtig ist, dass du beweist, dass das stimmt. dafür ist die zeichnung nur der tip:
Gruss leduart
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:50 Di 08.04.2008 | Autor: | Marcel |
Hallo,
> Könntet ihr sagen wie man dieses [mm]\delta>0[/mm] dort ablesen
> kann? Vielleicht [mm]\delta[/mm] von 0 bis schätzungsweise 1,8?(also
> bis zum Schnittpunkt der beiden Funktionen)
Du meinst den echt positiven $x$-Wert des Schnittpunktes der Graphen der beiden Funktionen (bei dem ersten Plot), wenn ich das ein wenig präziser ausdrücken darf.
Leduart hat es im Prinzip schonmal gesagt, aber ich möchte es mit anderen Worten sagen:
Aus der Zeichnung erkennt man folgendes:
Wegen der Konkavität der Sinusfunktion auf [mm] $[0,\pi]$ [/mm] (die kann man mittels der zweiten Ableitung von $x [mm] \mapsto \sin(x)$ [/mm] einsehen) kannst Du hier jedes [mm] $\delta \in (0,x_0]$ [/mm] wählen, wobei [mm] $x_0$ [/mm] der $x$-Wert des Schnittpunktes der beiden Graphen ist. Du sagst nun, dass [mm] $x_0 \approx [/mm] 1,8$.
Ich würde Dir empfehlen, ein naheliegend kleineres [mm] $\delta [/mm] > 0$ zu wählen. Wenn man [mm] $\delta=x_0 \approx [/mm] 1,8$ wählen kann, dann geht sicher auch [mm] $\delta=\frac{\pi}{2}$.
[/mm]
Also naheliegend wäre es für mich, zu zeigen:
Es gilt [mm] $\sin(x) \ge \frac{1}{2}*x$ [/mm] für alle $x [mm] \in [0,\delta]$ [/mm] mit [mm] $\delta:=\frac{\pi}{2} [/mm] > 0$
Wie könnte man das tun? Es gilt jedenfalls [mm] $\sin\left(\frac{\pi}{2}\right)=1$ [/mm] und [mm] $\frac{1}{\frac{\pi}{2}}=\frac{2}{\pi} [/mm] > [mm] \frac{1}{2}$.
[/mm]
[mm] $\sin(.)_{|[0,\pi]}$ [/mm] ist konkav und daher:
Für alle [mm] $\lambda \in [/mm] [0,1]$ gilt:
[mm] $\sin\left((1-\lambda)*0+\lambda*\frac{\pi}{2}\right) \ge (1-\lambda)*\sin(0)+\lambda*\sin\left(\frac{\pi}{2}\right)$
[/mm]
Beachtest Du nun noch, dass [mm] $\sin\left(\frac{\pi}{2}\right)=1$ [/mm] und [mm] $\sin(0)=0$ [/mm] gilt:
Die Substitution [mm] $x=\lambda*\frac{\pi}{2}$ ($\gdw \lambda=\frac{2}{\pi}*x$) [/mm] führt zum Ziel
(Übrigens:
Die geometrische Deutung, die ich Dir eigentich mit der Zeichnung nahelegen wollte:
Weil [mm] $\sin(.)$ [/mm] auf [mm] $[0,\pi]$ [/mm] konkav ist und der Graph dieser Funktion den Graph von $x [mm] \mapsto \frac{1}{2}x$ [/mm] an der Stelle [mm] $x_0 (\approx [/mm] 1,8)$ schneidet:
Betrachte ich eine Gerade von $(0,0)$ durch [mm] $(x,\sin(x))$ [/mm] mit einem $0 < x [mm] \le x_0$, [/mm] so ist die Steigung dieser Geraden sicherlich mindestens so groß wie die Steigung der Geraden beschrieben durch die Geradengleichung $x [mm] \mapsto \frac{1}{2} [/mm] x$, und letzgenannte hat Steigung [mm] $\frac{1}{2}$. [/mm] Die Konkavität der Sinusfunktion dort bedeutet aber dann was für die Punkte [mm] $(y,\sin(y))$ [/mm] mit $0 [mm] \le [/mm] y [mm] \le [/mm] x$?)
Gruß,
Marcel
|
|
|
|