matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisKonvergenz
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Konvergenz
Konvergenz < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:32 Di 29.11.2005
Autor: kuminitu

Hallo, ich habe hier eine Aufgabe, mit der ich nicht weiterkomme:

Sei ( [mm] a_{n}) [/mm] eine Folge reeller Zahlen. ZeigenSie:
Gibt es ein N  [mm] \varepsilon [/mm] N und eine reele Zahl  [mm] \partial [/mm] mit 0 <  [mm] \partial [/mm] < 1,
so dass   $ [mm] \wurzel[n]{(|a_{n}|)} [/mm] $ [mm] $\le$ $\partial$ [/mm] für alle n  [mm] \ge [/mm] N,
dann konvergiert die Reihe  [mm] \summe_{n=1}^{ \infty} a_{n} [/mm] absolut.
Formulieren Sie ein entsprechendes Divergenzkriterium und beweisen Sie dieses.

Bin über jede Antwort erfreut!
MFG
Kuminitu

        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 20:25 Di 29.11.2005
Autor: andreas

hallo

aus der vorraussetzung kannst du doch folgern, dass [m] |a_n| \leq \partial^n [/m]. was kommt dann jetzt hier als konvergente majorante in frage?

grüße
andreas

Bezug
                
Bezug
Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:30 Di 29.11.2005
Autor: kuminitu

Hallo Andreas,
ich weiss leider nicht worauf du hinaus willst?!
was bringt mir im diesen eine konvergente Majorante???
gruß
kuminitu

Bezug
                        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 09:47 Mi 30.11.2005
Autor: andreas

hallo

>  ich weiss leider nicht worauf du hinaus willst?!
>  was bringt mir im diesen eine konvergente Majorante???

dann kannst du das majorantenkriterium anwenden und auf konvergenz schließen? du musst dir nur noch überlegen, dass die ersten $N$ folgenglieder an der konvergenz nichts ändern ...

grüße
andreas

Bezug
                
Bezug
Konvergenz: weitere Frage
Status: (Frage) beantwortet Status 
Datum: 00:23 Mi 30.11.2005
Autor: ste1984

Ich sitze auch gerade an der Aufgabe!

Reicht es den aus, die Majorante zu finden und dann auf die Konvergenz zu schliessen. Das läuft doch irgendwo auf den Beweis des Wurzelkriteriums hinaus oder?

Bin unsicher, da ich in diversen Lehrbüchern gelesen habe, dass man sich den Limes Supremum anschaut, der ja dann kleiner oder größer 1 sein muss um auf Konvergenz zu schliessen. Diesen müsste man ja in die Ungleichung der Voraussetzung einbauen.

Also ich würde sagen man braucht das in dem Fall nicht, aber ich tue mich mit diesen Beweisen immer schwer...



Bezug
                        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 09:49 Mi 30.11.2005
Autor: andreas

hallo
  

> Reicht es den aus, die Majorante zu finden und dann auf die
> Konvergenz zu schliessen. Das läuft doch irgendwo auf den
> Beweis des Wurzelkriteriums hinaus oder?

ja. das ist eine version des wurzelkriteriums, siehe zum beispiel []hier.


> Bin unsicher, da ich in diversen Lehrbüchern gelesen habe,
> dass man sich den Limes Supremum anschaut, der ja dann
> kleiner oder größer 1 sein muss um auf Konvergenz zu
> schliessen. Diesen müsste man ja in die Ungleichung der
> Voraussetzung einbauen.

das ist eine andere version mit dem [mm] $\limsup$ [/mm] (die auch in dem obigen link steht). aber diese version hier sollte sich agnz einfach so wie von mir skizziert beweisen lassen.


grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]