matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisKonvergente Folgen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Konvergente Folgen
Konvergente Folgen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergente Folgen: Ich habe diese Frage in keinem
Status: (Frage) beantwortet Status 
Datum: 23:03 Mi 08.11.2006
Autor: ernesto2004

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Man betrachte zwei positive Zahlen b > a > 0.Die Folgen a_{n} und b_{n} seien durch die Startwerte a_{0} = a und b_{0} = b und die Vorschrift  

a_{n+1}= \bruch{a_{n} + b_{n}}{2}, b_{n+1}= \bruch{2a_{n}b_{n}}{{a_{n} + b_{n}}

rekursiv definiert. Man zeige

a. a_{n} und b_{n} sind konvergent und es gilt b_{n} > a_{n} für alle
n\in\IN,
b. \bigcap_{n=0}^{\infty}[a_{n},b_{n}]=\wurzel{ab}
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Konvergente Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:56 Do 09.11.2006
Autor: leduart

Hallo ernesto
es lohnt sich im Matheraum rumzusuchen hier klicken
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]