matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergente Folge?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Konvergente Folge?
Konvergente Folge? < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergente Folge?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:27 Do 16.11.2006
Autor: Docy

Aufgabe
Untersuchen Sie die folgende Folge auf Konvergenz und berechnen Sie gegebenfalls den Grenzwert.

k [mm] \ge [/mm] 2, a > 0, [mm] a_0 [/mm] > 0 und [mm] a_{n+1}=\bruch{1}{k}((k-1)a_{n} [/mm] + [mm] \bruch{a}{a_{n}^{k-1}}) [/mm]

Hallo,
kann mir hier jemand weiterhelfen, ich komme da nicht weiter.
Und zwar hab ich gesagt, wenn [mm] \limes_{n\rightarrow\infty}a_n [/mm] = x und daraus folgt, [mm] x=\bruch{1}{k}((k-1)x [/mm] + [mm] \bruch{a}{x^{k-1}}). [/mm] Daraus ergibt sich dann x= [mm] \wurzel[k]{3}. [/mm] Damit ist der Grenzwert [mm] \wurzel[k]{3} [/mm] falls er existiert.
Bleibt zu zeigen, dass die Folge konvergent ist.
Eine Folge ist aber nur dann konvergent, wenn sie nach oben beschränkt und monoton steigend bzw. nach unten beschränkt und monoton fallend ist. Ich habe mir gedacht, dass [mm] a_n>a_{n+1} [/mm] genau dann wenn gilt:
[mm] \bruch{1}{k}((k-1)a_{n} [/mm] + [mm] \bruch{a}{a_{n}^{k-1}}) [mm] \Rightarrow [/mm] a [mm] \le a_n^k. [/mm]
So jetzt muss ich noch zeigen, dass a [mm] \ge a_n^k [/mm] ist, das heisst, dass [mm] a_n^k [/mm] - a [mm] \ge [/mm] 0 ist.
Dann gilt:
[mm] \bruch{1}{k^k}((k-1)a_{n-1} [/mm] + [mm] \bruch{a}{a_{n-1}^{k-1}})^2 [/mm] - a [mm] \ge [/mm] 0.
Aber irgendwie kann ich das nicht zeigen :-(

Kann mir an dieser Stelle jemand weiterhelfen?

Jemand hat noch gemeint, dass man hier mit der Ungleichung:

[mm] \bruch{x_1+x_2+....+x_n}{n} \ge \wurzel[n]{x_1*x_2*....*x_n} [/mm]
weiterkommt, weil man dadurch beweisen kann, dass [mm] a_{n+1}^k \ge [/mm] a ist. Aber wir haben diese Ungleichung in der Vorlesung noch nicht benutzt, deshalb muss ich sie erst beweisen, aber auch hier komme ich nicht weiter.

Kann mir da jemand helfen?

Wäre echt super dankbar für jegliche Hilfe

Gruß
Docy

        
Bezug
Konvergente Folge?: Antwort (nicht fertig)
Status: (Antwort) noch nicht fertig Status 
Datum: 18:51 Do 16.11.2006
Autor: Salvathras

Uni Kaiserslautern , GdM I , stimmts ?

Nun, ich hab das wie folgt bewiesen:
Ich habe gezeigt dass es drei Fälle gibt:

1. a(0) =  k-te Wurzel aus a ; hierfür gilt a(n) = a(n+1) usw. und leicht zu zeigen dass a(n) konvergiert;

2. a(0) < k-te Wurzel aus a; hierfür wird die Folge mon. wachsend und beschränkt.

3. a(0)> k-te Wurzel aus a; hierfür wird die Folge mon. fallend

Das Problem dass ich habe, ist dann nachzuweisen, dass 2. und 3. ebenfalls konvergent ist . Weiß nicht ob das stimmt, aber wäre nett wenn jemand helfen könnte (habs gleiche Problem).


Bezug
                
Bezug
Konvergente Folge?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:26 Do 16.11.2006
Autor: Docy

moin salvathras,
> Uni Kaiserslautern , GdM I , stimmts ?

richtig!  :-)

Naja, ich hoffe, es gibt da draußen jemanden, der uns helfen kann!

Gruß
Docy

Bezug
                        
Bezug
Konvergente Folge?: Antwort
Status: (Antwort) fertig Status 
Datum: 08:55 Fr 17.11.2006
Autor: Salvathras

Also , noch schnell bevor ich zu GdM gehe:
Das ist ganz einfach: Weise einfach nach dass die Folge beschränkt ist (nicht schwer) und dass sie je nach a(0) mon. wachsend/fallend oder konstant ist . Dann kannst Du ja sagen (lim (an) = lim (a(n+1)) und ersetzt a(n+1) durch die Formel . Das kannst Du umformen und erhälst den Grenzwert auch offiziell.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]