matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisKonverg. , Monoton. , Beschrä.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Schul-Analysis" - Konverg. , Monoton. , Beschrä.
Konverg. , Monoton. , Beschrä. < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konverg. , Monoton. , Beschrä.: Frage
Status: (Frage) beantwortet Status 
Datum: 17:48 Fr 29.10.2004
Autor: Tommylee

Hallo ,
ich habe zur Klausurvorbereitung unter anderem folgende Aufgabe:

Sind die folgenden Sätze wahr ? Begründen Sie Ihre Antwort

a) Jede konvergente Folge ist beschränkt

b) Jede beschränkte Folge ist monoton


zu a habe ich kein Problem:

Außerhalb jeder [mm] \varepsilon [/mm] Umgebung nom Grenzwert g liegen höchstens
endlich viele Folgenglieder. Damit ist die Beschränkung bewiesen.
Ich denke so ist es richtig. wenn nicht 100%ig bitte Korrektur. Danke


zu b
Jede beschränkte Folge ist monoton. Dieser Satz ist natürlich falsch.
Ich kann  jetzt ein Beispiel geben für eben so eine Folge , die nicht monoton , aber beschränkt ist.
Zum Beispiel eine alternierende konvergente Folge :  [mm] -1^n [/mm] * 1/n
Meine Begründung ist ja jetzt , dass es auch alternierende Folgen gibt , die beschränkt sind . Ist das als Begründung in Ordnung.


Dankeschön
Gruß


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Konverg. , Monoton. , Beschrä.: Antwort
Status: (Antwort) fertig Status 
Datum: 17:57 Fr 29.10.2004
Autor: Julius

Hallo Tommylee!

> Sind die folgenden Sätze wahr ? Begründen Sie Ihre
> Antwort
>  
> a) Jede konvergente Folge ist beschränkt
>  
> b) Jede beschränkte Folge ist monoton
>  
>
> zu a habe ich kein Problem:
>  
> Außerhalb jeder [mm]\varepsilon[/mm] Umgebung nom Grenzwert g liegen
> höchstens
>  endlich viele Folgenglieder. Damit ist die Beschränkung
> bewiesen.
>  Ich denke so ist es richtig. wenn nicht 100%ig bitte
> Korrektur. Danke

Absolut richtig! [daumenhoch]

Hast du jetzt noch eine Idee, wie man das formal aufschreiben könnte?

> zu b
> Jede beschränkte Folge ist monoton. Dieser Satz ist
> natürlich falsch.

[ok]

>  Ich kann  jetzt ein Beispiel geben für eben so eine Folge
> , die nicht monoton , aber beschränkt ist.
>  Zum Beispiel eine alternierende konvergente Folge :  [mm]-1^n[/mm]
> * 1/n

Du meinst: [mm] $a_n [/mm] = [mm] (-1)^n \cdot \frac{1}{n}$. [/mm]

Warum wählst du nicht einfacher [mm] $b_n=(-1)^n$? [/mm] ;-)

>  Meine Begründung ist ja jetzt , dass es auch alternierende
> Folgen gibt , die beschränkt sind . Ist das als Begründung
> in Ordnung.

Es genügt ein Gegenbeispiel anzugeben. :-)

Liebe Grüße
Julius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]