matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenKonkav
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionen" - Konkav
Konkav < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konkav: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:16 Sa 06.02.2016
Autor: JXner

Aufgabe
Folgende Funktion ist gegeben:
f(x) = [mm] xe^{\bruch{3-x^2}{2}} [/mm]
f''(x) = [mm] (-3x+x^3)*e^{\bruch{3-x^2}{2}} [/mm]

Nun wird gefragt ob die Funktion im Intervall [-4;2] konkav ist.

Lösungsansatz:

f''(x) < 0
= [mm] (-3x+x^3)<0 [/mm]
= [mm] x(-3+x^2)<0 [/mm]
= ((x>0) [mm] \wedge (x^2-3)<0) \vee [/mm] ((x<0) [mm] \wedge (x^2-3)>0) [/mm]

Guten Morgen beisammen,

Meine Frage bzgl. der Aufgabe besteht in der Letzten Zeile des Lösungsweges.
Mir sind die ">" und "<" nicht ganz ersichtlich.

Warum ist x einmal > 0 und einmal < 0?
Warum ist der Term [mm] (x^2-3) [/mm] einmal < 0 und einmal > 0?

Grüße


Joschua

        
Bezug
Konkav: Antwort
Status: (Antwort) fertig Status 
Datum: 09:36 Sa 06.02.2016
Autor: M.Rex

Hallo

> Folgende Funktion ist gegeben:
> f(x) = [mm]xe^{\bruch{3-x^2}{2}}[/mm]
> f''(x) = [mm](-3x+x^3)*e^{\bruch{3-x^2}{2}}[/mm]

>

> Nun wird gefragt ob die Funktion im Intervall [-4;2] konkav
> ist.

>

> Lösungsansatz:

>

> f''(x) < 0
> = [mm](-3x+x^3)<0[/mm]
> = [mm]x(-3+x^2)<0[/mm]
> = ((x>0) [mm]\wedge (x^2-3)<0) \vee[/mm] ((x<0) [mm]\wedge (x^2-3)>0)[/mm]

>

> Guten Morgen beisammen,

>

> Meine Frage bzgl. der Aufgabe besteht in der Letzten Zeile
> des Lösungsweges.
> Mir sind die ">" und "<" nicht ganz ersichtlich.

>

> Warum ist x einmal > 0 und einmal < 0?
> Warum ist der Term [mm](x^2-3)[/mm] einmal < 0 und einmal > 0?

Du hast ja ein Produnkt mit den beiden Faktoren x und x²-3.
Dieses Produkt ist negativ, wenn ein Faktor positiv ist, der andere aber negativ. Also in folgenden beiden Fällen:
Fall 1: x>0 und x²-3<0
Fall 2: x<0 und x²-3>0

Fall 1 ist erfüllt für [mm] 0 Fall 2 ist erfüllt für [mm] x<-\sqrt{3} [/mm]

>

> Grüße

>
>

> Joschua

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]