matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieKongruenzsystem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Zahlentheorie" - Kongruenzsystem
Kongruenzsystem < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kongruenzsystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:42 Di 21.10.2008
Autor: Steff0815

Aufgabe
Man löse das Kongruenzsystem

3x [mm] \equiv [/mm] 12(8)
2x [mm] \equiv [/mm] 4(18)
35x [mm] \equiv [/mm] 10(30)

Die Lösung und Herangehensweise der Aufgabe ist soweit klar. Bisher habe ich folgendes gemacht:

3x [mm] \equiv [/mm] 12(8)
x [mm] \equiv [/mm] 4(8)


2x [mm] \equiv [/mm] 4(18)
[mm] x\equiv [/mm] 2(18)

35x [mm] \equiv [/mm] 10(30)
35x [mm] \equiv [/mm] 70(30)
x [mm] \equiv [/mm] 2(30)

ggt(8,18,30) = 2
ggt(8,18) = 2
ggt(18,30) = 2
ggt(8,30) = 2                     [mm] \to [/mm] lösbar

M= m1 *m2 *m3 = 8*18*30= 4320

[mm] \bruch{4320}{8} [/mm] y1 + [mm] \bruch{4320}{18} [/mm] y2 + [mm] \bruch{4320}{30} [/mm] y3 = 1

540 y1 + 240 y2 + 144 y3 = 1

Nun komme ich nicht weiter. Eigentlich müsste ich die Gleichungssysteme

540 y1 [mm] \equiv [/mm] 2(8)

240 y2 [mm] \equiv [/mm] 2(18)

144 y3 [mm] \equiv [/mm] 2(30)

lösen.
Doch das geht nicht. Was muss ich tun?

Danke für die Hilfe.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.




        
Bezug
Kongruenzsystem: Antwort
Status: (Antwort) fertig Status 
Datum: 19:14 Di 21.10.2008
Autor: abakus


> Man löse das Kongruenzsystem
>  
> 3x [mm]\equiv[/mm] 12(8)
>  2x [mm]\equiv[/mm] 4(18)
>  35x [mm]\equiv[/mm] 10(30)
>  Die Lösung und Herangehensweise der Aufgabe ist soweit
> klar. Bisher habe ich folgendes gemacht:
>  
> 3x [mm]\equiv[/mm] 12(8)
>  x [mm]\equiv[/mm] 4(8)
>  
>
> 2x [mm]\equiv[/mm] 4(18)
>  [mm]x\equiv[/mm] 2(18)

Das ist falsch.
Aus ac [mm] \equiv [/mm] bc (m)
folgt a [mm] \equiv [/mm] b [mm] (\bruch{m}{ggt(c;m)}) [/mm]

Hier konkret: ggT(2;18)=2 ; 18:2=9
also    [mm]x\equiv[/mm] 2(9)




>  
> 35x [mm]\equiv[/mm] 10(30)

Beide Seiten durch 5 teilbar, ggT(5;30)=5 ; 30:5=6
  7x [mm]\equiv[/mm] 2(6), und wegen 6x [mm] \equiv [/mm] 0(6) folgt daraus
  [mm] 7x-6x\equiv [/mm] x [mm] \equiv [/mm] 2(6),
  x [mm] \equiv [/mm] 2(6),

Gruß Abakus


>  35x [mm]\equiv[/mm] 70(30)
>  x [mm]\equiv[/mm] 2(30)
>  
> ggt(8,18,30) = 2
>  ggt(8,18) = 2
>  ggt(18,30) = 2
>  ggt(8,30) = 2                     [mm]\to[/mm] lösbar
>  
> M= m1 *m2 *m3 = 8*18*30= 4320
>  
> [mm]\bruch{4320}{8}[/mm] y1 + [mm]\bruch{4320}{18}[/mm] y2 + [mm]\bruch{4320}{30}[/mm]
> y3 = 1
>  
> 540 y1 + 240 y2 + 144 y3 = 1
>  
> Nun komme ich nicht weiter. Eigentlich müsste ich die
> Gleichungssysteme
>  
> 540 y1 [mm]\equiv[/mm] 2(8)
>  
> 240 y2 [mm]\equiv[/mm] 2(18)
>  
> 144 y3 [mm]\equiv[/mm] 2(30)
>  
> lösen.
>  Doch das geht nicht. Was muss ich tun?
>  
> Danke für die Hilfe.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
>
>  


Bezug
                
Bezug
Kongruenzsystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:27 Di 21.10.2008
Autor: Steff0815

ok, danke.
Aber wie mache ich nun weiter?

ich habe quasi:

x $ [mm] \equiv [/mm] $ 4(8)
  
[mm] x\equiv [/mm]  2(9)   und

x $ [mm] \equiv [/mm] $ 2(6)

Nun muss ich den ggt finden!?? d.h.:

ggt(8,9,6) = 1
ggt(8,9) = 1
ggt(9,6) = 3
ggt(8,6) = 2

D.h. das Kongruenzsystem ist nicht lösbar, weil der ggt nicht gleich ist???



Bezug
                        
Bezug
Kongruenzsystem: Antwort
Status: (Antwort) fertig Status 
Datum: 20:17 Di 21.10.2008
Autor: abakus


> ok, danke.
>  Aber wie mache ich nun weiter?
>  
> ich habe quasi:
>  
> x [mm]\equiv[/mm] 4(8)
>    
> [mm]x\equiv[/mm]  2(9)   und
>  
> x [mm]\equiv[/mm] 2(6)
>  
> Nun muss ich den ggt finden!?? d.h.:
>  
> ggt(8,9,6) = 1
>  ggt(8,9) = 1
>  ggt(9,6) = 3
>  ggt(8,6) = 2
>  
> D.h. das Kongruenzsystem ist nicht lösbar, weil der ggt
> nicht gleich ist???
>  
>  

Was willst du mit den ggT's?

Aus deinen 3 Äquivalenzaussagen folgen drei Gleichungen mit 4 Unbekannten:
(1)  x=8k+4
(2)  x=9m+2
(3) x= 6n+2  (wobei k, m, n [mm] \in \IZ [/mm] )

In diesem Gleichungssystem kannst du zwei der drei Variablen k, m, n beseitigen und erhältst x in Abhängigkeit von einer Variablen.

Mit etwas Übersicht geht es auch schneller.

Aus (2) und (3) folgt, dass x bei Teilung durch 18 den Rest 2 lässt, also [mm] x\in [/mm] { ..., -16; 2; 20; 38; 56; 74; 92;...}
Davon lassen ...;20; 92; ... den Rest 4 bei Teilung durch 8. Da all diese Lösungen den Abstand 72  besitzen, sind sie in der Form
x=72k+20 darstellbar.

Gruß Abakus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]