matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNumerik linearer GleichungssystemeKondition einer Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Numerik linearer Gleichungssysteme" - Kondition einer Matrix
Kondition einer Matrix < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kondition einer Matrix: Tipp
Status: (Frage) beantwortet Status 
Datum: 23:17 Mi 15.02.2012
Autor: JigoroKano

Hey Leute,

ich hätte mal eine Frage zum Thema Kondition einer Matrix. Wir haben in der Vorlesung verschiedenste Matrix-Normen definiert. Spalten- und Zeilensummennorm, Frobeniusnorm,....
Nun ist in der Vorbereitungsklausur eine Frage, bei der wir die Kondtionen [mm] (k_{rel} [/mm] und [mm] k_{abs}) [/mm] einer Matrix bestimmen sollen. Ich habe für die Kondition allerdings nur folgende Definition gefunden: [mm] k(A)=\parallel [/mm] A [mm] \parallel_{\*} \parallel A^{-1} \parallel_{\*} [/mm]
Meine Frage nun: Was ist [mm] k_{rel} [/mm] und [mm] k_{abs} [/mm] ? Über hilfreiche Antworten würde ich mich freuen :-)

Schönen Abend noch :)
Kano

        
Bezug
Kondition einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 09:31 Fr 17.02.2012
Autor: fred97

Hier

http://de.wikipedia.org/wiki/Kondition_(Mathematik)

kannst Du nachlesen, was man unter der absoluten Kondition [mm] k_{abs}(f) [/mm] und unter der relativen Kondition  [mm] k_{rel}(f) [/mm] einer Abbildung [mm] $f:\IR^n \to \IR^m$ [/mm] versteht.

Ist nun A eine mxn- Matrix, so setze f(x)=Ax.  Dann def. man:

        [mm] k_{abs}(A):=k_{abs}(f) [/mm]

und

        [mm] k_{rel}(A):= k_{rel}(f) [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]