matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenKomplexe Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe Zahlen
Komplexe Zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:12 So 22.01.2012
Autor: mbau16

Aufgabe
Ermitteln Sie [mm] z_{3} [/mm]

[mm] z_{1}=3*(cos(240grad)+i*sin(240grad) [/mm]

[mm] z_{2}=2*(cos(135grad)+i*sin(135grad) [/mm]

[mm] z_{3}=\bruch{4*z_{1}-i}{2*z_{2}+i} [/mm]

Guten Morgen,

[mm] z_{1}=3*(cos(240grad)+i*sin(240grad) [/mm]

[mm] z_{2}=2*(cos(135grad)+i*sin(135grad) [/mm]

[mm] z_{3}=\bruch{4*z_{1}-i}{2*z_{2}+i} [/mm]

[mm] z_{3}=\bruch{4*(3*(cos(240grad)+i*sin(240grad)))-i}{2*(2*(cos(135grad)+i*sin(135grad)))+i} [/mm]

[mm] z_{3}=6(cos(240grad-135grad)+i*sin(240grad-135grad) [/mm]

Ist das so richtig? Was mach ich mit -i im Zähler  und +i im Nenner?

Vielen Dank

Gruß

mbau16

        
Bezug
Komplexe Zahlen: nicht richtig
Status: (Antwort) fertig Status 
Datum: 12:17 So 22.01.2012
Autor: Loddar

Hallo mbau!



> Ermitteln Sie [mm]z_{3}[/mm]
>  
> [mm]z_{1}=3*(cos(240grad)+i*sin(240grad)[/mm]
>  
> [mm]z_{2}=2*(cos(135grad)+i*sin(135grad)[/mm]
>  
> [mm]z_{3}=\bruch{4*z_{1}-i}{2*z_{2}+i}[/mm]
>  Guten Morgen,
>  
> [mm]z_{1}=3*(cos(240grad)+i*sin(240grad)[/mm]
>  
> [mm]z_{2}=2*(cos(135grad)+i*sin(135grad)[/mm]
>  
> [mm]z_{3}=\bruch{4*z_{1}-i}{2*z_{2}+i}[/mm]
>  
> [mm]z_{3}=\bruch{4*(3*(cos(240grad)+i*sin(240grad)))-i}{2*(2*(cos(135grad)+i*sin(135grad)))+i}[/mm]
>  
> [mm]z_{3}=6(cos(240grad-135grad)+i*sin(240grad-135grad)[/mm]

[eek] Wie kommst Du hierauf?

Berechne doch hier die Werte [mm] $\cos^\left(240^\circ\right)$ [/mm] , [mm] $\cos^\left(135^\circ\right)$, $\sin^\left(240^\circ\right)$ [/mm] und [mm] $\sin^\left(135^\circ\right)$ [/mm] .
Das ergibt alles Werte, mit denen man gut weiterrechnen kann.


Gruß
Loddar


Bezug
                
Bezug
Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:27 So 22.01.2012
Autor: mbau16


> Hallo mbau!
>  
>
>
> > Ermitteln Sie [mm]z_{3}[/mm]
>  >  
> > [mm]z_{1}=3*(cos(240grad)+i*sin(240grad)[/mm]
>  >  
> > [mm]z_{2}=2*(cos(135grad)+i*sin(135grad)[/mm]
>  >  
> > [mm]z_{3}=\bruch{4*z_{1}-i}{2*z_{2}+i}[/mm]
>  >  Guten Morgen,
>  >  
> > [mm]z_{1}=3*(cos(240grad)+i*sin(240grad)[/mm]
>  >  
> > [mm]z_{2}=2*(cos(135grad)+i*sin(135grad)[/mm]
>  >  
> > [mm]z_{3}=\bruch{4*z_{1}-i}{2*z_{2}+i}[/mm]
>  >  
> >
> [mm]z_{3}=\bruch{4*(3*(cos(240grad)+i*sin(240grad)))-i}{2*(2*(cos(135grad)+i*sin(135grad)))+i}[/mm]
>  >  
> > [mm]z_{3}=6(cos(240grad-135grad)+i*sin(240grad-135grad)[/mm]
>  
> [eek] Wie kommst Du hierauf?

Formel:

[mm] \bruch{z_{1}}{z_{2}}=\bruch{r_{1}}{r_{2}}*(cos(\phi_{1}-\phi_{2})+i*sin(\phi_{1}-\phi_{2})) [/mm]

Wenn ich das in die allgemeine Form bringe, wird es sehr kompliziert für mich zu rechnen! Kann ich meine Formel nicht anwenden?

>  
> Berechne doch hier die Werte [mm]\cos^\left(240^\circ\right)[/mm] ,
> [mm]\cos^\left(135^\circ\right)[/mm], [mm]\sin^\left(240^\circ\right)[/mm]
> und [mm]\sin^\left(135^\circ\right)[/mm] .
>  Das ergibt alles Werte, mit denen man gut weiterrechnen
> kann.
>  
>
> Gruß
>  Loddar
>  


Bezug
                        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:49 So 22.01.2012
Autor: leduart

Hallo
du hast einfach [mm] 4z_1/3z_2 [/mm] ausgerechnet, und solltest wissen, dass man so nen Bruch nicht ausrechnen kann.
du musst [mm] 4z_1-i=w_1 [/mm]  und [mm] 2z_2+i=w_2 [/mm]  erst in die Form [mm] w=r*(cos\phi+isin\phi) [/mm] bringen, wenn du deine formel verwenden willst.  
dazu ist es am einfachsten wirklich die exakten Werte für sin und cos dieser einfachen Winkel einzusetzen.
wenn du [mm] \bruch{a+ib}{c+id} [/mm] hast erweitere mit mit dem konj. kompl des nenners, also mit c-id.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]