matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenKompl. Zahl. Gleichung beweise
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Komplexe Zahlen" - Kompl. Zahl. Gleichung beweise
Kompl. Zahl. Gleichung beweise < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kompl. Zahl. Gleichung beweise: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:21 Fr 09.01.2009
Autor: MissPocahontas

Aufgabe
Für n e N seien: Und zeigen Sie:

[Externes Bild http://download.spirescu.com/komplex.jpg]

[Dateianhang nicht öffentlich]

  

Hey, ich komme bei einer Aufgabe in Mathe leider nicht weiter. Habe schon verzweifelt einiges durchprobiert, komme aber einfach nicht darauf. Würde mich freuen, wenn mir jemand helfen könnte.

Danke schonmal.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Kompl. Zahl. Gleichung beweise: Antwort
Status: (Antwort) fertig Status 
Datum: 12:53 Sa 10.01.2009
Autor: rainerS

Hallo!

> Für n e N seien: Und zeigen Sie:
>  
> [Externes Bild http://download.spirescu.com/komplex.jpg]
>  
> [Dateianhang nicht öffentlich]

Bitte bitte benutze den Formeleditor!

>  ],
>
> Hey, ich komme bei einer Aufgabe in Mathe leider nicht
> weiter. Habe schon verzweifelt einiges durchprobiert, komme
> aber einfach nicht darauf. Würde mich freuen, wenn mir
> jemand helfen könnte.

Es ist

  [mm]x_{n+1}y_{n}-x_{n}y_{n+1} = \mathop{\mathrm{Re}}z_{n+1}* \mathop{\mathrm{Im}} z_{n} - \mathop{\mathrm{Re}}z_{n}* \mathop{\mathrm{Im}} z_{n+1}} [/mm]

Ich kann Real- und Imaginärteil auch durch die Zahl und ihre konjugiert Komplexe ausdrücken:

[mm] \mathop{\mathrm{Re}}z_{n} = \bruch{1}{2} (z_{n} + \overline{z_{n}} )[/mm],  [mm] \mathop{\mathrm{Im}}z_{n} = \bruch{1}{2i} (z_{n} - \overline{z_{n}} )[/mm].

Setze das mal ein und bedenke, dass [mm] $z_{n+1} [/mm] = [mm] z_n*(1-i\sqrt{7})$ [/mm] ist!

  Viele Grüße
    Rainer


Bezug
                
Bezug
Kompl. Zahl. Gleichung beweise: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:03 So 11.01.2009
Autor: MissPocahontas

Danke dir. Ich hab die Aufgabe gestern abend nun doch noch rausbekommen, ist zwar viel Schreibarbeit ;-) aber am Ende kam das raus, was rauskommen sollte. Danke dir trotzdem.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]