matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikKommutator
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Physik" - Kommutator
Kommutator < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kommutator: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:11 Fr 30.07.2010
Autor: mb588

Aufgabe
Berechnen Sie folgenden Kommutator:

[mm] [\hat{x},\hat{L}_{y}] [/mm]

Hallo.
Ich brauch hier nur mal eine kleine Hilfe. Soweit bin ich bereits:

[mm] [\hat{x},\hat{L}_{y}]=[\hat{x},\hat{z}\hat{p}_{x}-\hat{x}\hat{p}_{z}]=[\hat{x},\hat{z}\hat{p}_{x}]+[\hat{x},-\hat{x}\hat{p}_{z}]=[\hat{x},\hat{z}]\hat{p}_{x}+\hat{z}[\hat{x},\hat{p}_{x}]-[\hat{x},\hat{x}]\hat{p}_{z}-\hat{x}[\hat{x},\hat{p}_{z}]=[\hat{x},\hat{z}]\hat{p}_{x}+\hat{z}i\overline{h}-0-0=i\overline{h}\hat{z}+\hat{x}\hat{z}\hat{p}_{x}-\hat{z}\hat{x}\hat{p}_{x} [/mm]

Das der vorletzte Summand Null wird liegt daran das [mm] [\hat{x},\hat{x}] [/mm] vertauschen, da [mm] \hat{x}\hat{x}-\hat{x}\hat{x}=0 [/mm] ist und der letzte Summand wird Null, da die Vertauschungrelation gilt, also [mm] [\hat{x}_{i},\hat{p}_{x_{j}}]=i\overline{h}\delta_{i,j} [/mm]  gilt für [mm] \hat{x}_{i}=\hat{x},\hat{y},\hat{z}. [/mm]

Kann man das jetzt noch weiter ausrechnen bzw. zusammenfassen?

Dank für die Antwort.

        
Bezug
Kommutator: Antwort
Status: (Antwort) fertig Status 
Datum: 12:12 Sa 31.07.2010
Autor: Kroni

Hi,

> Berechnen Sie folgenden Kommutator:
>  
> [mm][\hat{x},\hat{L}_{y}][/mm]
>  Hallo.
>  Ich brauch hier nur mal eine kleine Hilfe. Soweit bin ich
> bereits:
>  
> [mm][\hat{x},\hat{L}_{y}]=[\hat{x},\hat{z}\hat{p}_{x}-\hat{x}\hat{p}_{z}]=[\hat{x},\hat{z}\hat{p}_{x}]+[\hat{x},-\hat{x}\hat{p}_{z}]=[\hat{x},\hat{z}]\hat{p}_{x}+\hat{z}[\hat{x},\hat{p}_{x}]-[\hat{x},\hat{x}]\hat{p}_{z}-\hat{x}[\hat{x},\hat{p}_{z}]=[\hat{x},\hat{z}]\hat{p}_{x}+\hat{z}i\overline{h}-0-0=i\overline{h}\hat{z}+\hat{x}\hat{z}\hat{p}_{x}-\hat{z}\hat{x}\hat{p}_{x}[/mm]
>
> Das der vorletzte Summand Null wird liegt daran das
> [mm][\hat{x},\hat{x}][/mm] vertauschen, da
> [mm]\hat{x}\hat{x}-\hat{x}\hat{x}=0[/mm] ist und der letzte Summand
> wird Null, da die Vertauschungrelation gilt, also
> [mm][\hat{x}_{i},\hat{p}_{x_{j}}]=i\overline{h}\delta_{i,j}[/mm]  
> gilt für [mm]\hat{x}_{i}=\hat{x},\hat{y},\hat{z}.[/mm]
>  
> Kann man das jetzt noch weiter ausrechnen bzw.
> zusammenfassen?
>  

ja, das kann man noch weiter zusammenfassen (Ich lasse aber die [mm] $\hat$ [/mm] weg bei den Operatoren):

[mm] $[x,L_y] [/mm] = [mm] [x,z]p_x [/mm] + [mm] z[x,p_x]$ [/mm] wie du richtig ausgerechnet hast. Nun gilt aber: $[x,z]=0$, denn, wenn dus dir zB in Ortsraumdarstellung anschaust, sind [mm] $\hat{x} [/mm] = x$ und [mm] $\hat{z} [/mm] = z$, also $xz = zx [mm] \Rightarrow [/mm] [x,z] = 0$, oder, allgemeiner:

[mm] $[x_i,x_j] [/mm] = 0 [mm] \quad \forall i,j=1,\ldots,n$ [/mm] mit [mm] $n=\mathrm{dim}V$, [/mm] also in unserem Fall $n=3$.

Damit faellt dann auch der letzte Term weg, und es bleibt nur noch der erste ueber.

Achso, wenn man sich die Sache mit dem Kreuzprodukt ersparen will, dann ist es ab und zu ganz nuetzlich, den Levi-Civita-Tensor [mm] $\epislon_{ijk}$ [/mm] einzufuehren, um damit das Kreuzprodukt auszudruecken (d.h. [mm] $(a\times b)_i [/mm] = [mm] \epsilon_{ijk} a_j b_k$), [/mm] aber das ist nur ein anderer Weg, der ab und zu schneller geht, als alles 'per Hand' auszurechnen.



LG

Kroni

> Dank für die Antwort.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]