matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesKombinatorik und Permutationen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Sonstiges" - Kombinatorik und Permutationen
Kombinatorik und Permutationen < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombinatorik und Permutationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:56 Di 10.05.2005
Autor: paperjam

Hallo

Ich hänge bei folgender Aufgabe:
Auf der Menge [mm] \mbox{Sur(k,n)} [/mm] wird durch
[mm] \mbox{f \sim g :\gdw} [/mm] es gibt eine Permutation [mm] \mbox{\delta \in Sym_{n}} [/mm] mit [mm] \mbox{f = \delta \circ{} g} [/mm] definiert.
Zeigen Sie, dass jede Äquivalenzklasse der Quotientenmenge [mm] \mbox{Sur(k,n)/\sim} [/mm] aus [mm] \mbox{n!} [/mm] Elementen von [mm] \mbox{Sur(k,n)} [/mm] besteht.

Ich wäre froh wenn mir hier jemand weiterhelfen könnte.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kombinatorik und Permutationen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:09 Di 10.05.2005
Autor: Julius

Hallo paperjam!

Ich sehe gerade nicht, wo das Problem liegt. [kopfkratz3]

Für $g [mm] \in \mbox{Sur}(k,n)$ [/mm] gilt:

$[g] = [mm] \{ \sigma \circ g\, : \, \sigma \in S_n\}$. [/mm]

Die Elemente sind alle verschieden, d.h. für [mm] $\sigma,\sigma' \in S_n$ [/mm] mit [mm] $\sigma \ne \sigma'$ [/mm] gilt:

[mm] $\sigma \circ [/mm] g [mm] \ne \sigma' \circ [/mm] g$,

denn es gibt ein $k [mm] \in \{1,2,\ldots,n\}$ [/mm] mit [mm] $\sigma(k) \ne \sigma'(k)$ [/mm] und wegen der Surjektivität von $g$ ein $j [mm] \in \{1,2,\ldots,k\}$ [/mm] mit $g(j)=k$, so dass

[mm] $(\sigma \circ [/mm] g)(j) = [mm] \sigma(k) \ne \sigma'(k) [/mm] = [mm] (\sigma' \circ [/mm] g)(j)$.

Damit folgt:

$|[g]| = [mm] |\{\sigma \circ g\, : \, \sigma \in S_n\}| [/mm] = [mm] |S_n| [/mm] = n!$.

Viele Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]