matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesKombinatorik - Passwortanzahl
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Sonstiges" - Kombinatorik - Passwortanzahl
Kombinatorik - Passwortanzahl < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombinatorik - Passwortanzahl: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 11:52 Di 03.03.2015
Autor: radiac

Aufgabe
Wieviele Möglichkeiten an Passwörtern gibt es, bei insgesamt 9 Zeichen, alles Kleinbuchstaben und den folgenden Einschränkungen: kein Buchstabe darf öfter als 5 mal in dem Wort vorkommen, kein Buchstabe darf öfter als 3 mal nacheinander vorkommen.

Die Anzahl aller Passwörter errechnet sich meines Erachtens einfach aus [mm] 26^9. [/mm]

Davon abziehen könnte ich ja erst mal die Wörter, in denen 3 Buchstaben aufeinander folgen. In diesem Fall wären ja nur 6 Stellen verschieden, also [mm] 26^6 [/mm] Wörter. Die 3 gleichen Buchstaben können jedoch am Anfang, am Ende oder in der Mitte auftauchen. Diese Anzahl müsste ich ja wieder hinzurechnen, es ergibt sich meines Erachtens: [mm] 6*26^6 [/mm]

Die Differenz aus [mm] 26^9 [/mm] und [mm] 6*26^6 [/mm] wäre dann die Anzahl der Möglichkeiten, dass 3 gleiche Buchstaben im Wort vorkommen richtig?

Also wäre die gesuchte Anzahl der Wörter, in denen es keine 3 nacheinander folgenden gleichen Buchstaben gibt [mm] 6*26^6. [/mm]

Davon abziehen müsste ich noch die Wörter, in denen ein und derselbe Buchstabe 5 mal vorkommt. Dies kann ja an verschiedenen Stellen sein. In diesem Fall wären aber nur noch 4 Buchstaben variabel, also [mm] 26^4. [/mm] Jetzt harkt es bei mir aber, denn in diesen Wörtern können ja wiederum einige Auftauchen, bei denen ein Buchstabe 3 mal hintereinander kommt...

Hat jemand eine Idee bzw. kann jemand prüfen ob mein erster Ansatz überhaupt stimmt?

Viele Dank!

Mfg

Lars



        
Bezug
Kombinatorik - Passwortanzahl: Antwort
Status: (Antwort) fertig Status 
Datum: 14:22 Mi 04.03.2015
Autor: Ladon

Hallo radiac,

da schon länger keiner antwortet, gebe ich dir mal ein paar Anstöße (und setze daher den Frage-Status auf "halb-beantwortet"):
Es ist klar, dass es sich bei dem Passwort um eine Permutation mit Wiederholung handelt. Wie haben als zugehörige Menge
            [mm] $\Omega=\{A,B,C,...,Z\}^9=\underbrace{\{A,B,C,...,Z\}\times\{A,B,C,...,Z\}\times...\times \{A,B,C,...,Z\}}_{9 mal}$ [/mm]
Wie du richtig erkannt hast ist [mm] |\Omega|=26^9. [/mm]

Nun zu den Einschränkungen, die wir aus der Anzahl der Möglichkeiten "herausrechnen" müssen:

1.) Buchstaben kommen öfter als 5 mal in dem Wort vor:
Dazu berechnen wir die Möglichkeiten genau 6-, 7-, 8- oder 9-mal diesselben Buchstaben zu erhalten.
- Möglichkeit genau 6-mal denselben Buchstaben zu erhalten: [mm] \vektor{9\\6}\cdot26\cdot25^3. [/mm]
Die 6 Plätze des 9-Tupels mit immer denselben Buchstaben zu belegen beträgt [mm] \vektor{9\\6}\cdot26, [/mm] da wir uns einen der 26 Buchstaben quasi "aussuchen" dürfen und die Möglichkeit aus 9 vorhandenen Plätzen 6 "zu ziehen" gerade 9 über 6 beträgt.
Die restlichen 3 Plätze können wir mit den anderen 25 Buchstaben belegen und erhalten damit [mm] 25^3 [/mm] Möglichkeiten.
Beachte, dass [mm] \vektor{9\\6}=\vektor{9\\3} [/mm] ist.
Die Anzahl an Möglichkeiten genau 7-, 8-, 9-mal denselben Buchstaben zu erhalten kannst du analog berechnen. Addiere am Ende die Anzahlen und du erhälst die Anzahl der Möglichkeiten, dass Buchstaben öfter als 5 mal in dem Wort vorkommen.


2.) Buchstaben kommen öfter als 3 mal nacheinander vor:
Hier müssen wir beachten, dass wir die Möglichkeiten von 6 bis 9 gleichen Buchstaben bereits betrachtet haben und diese also herausfallen. Wir betrachten hier also die Anzahl der Möglichkeiten genau 3-, 4- oder 5-mal dieselben Buchstaben zu ziehen! Beachte: Es kann auch sein, dass zwei mal 3 hintereinanderfolgende gleiche Buchstaben vorkommen! z.B. so: A,A,A,B,C,C,C,D,E oder auch A,A,A,A,C,C,C,D,A.
Und hier beginnt der Spaß, den ich dir leider aufgrund fehlender Zeit nicht hinreichend genau darlegen kann. Jedenfalls musst du dir mit diesem Vorgehen ziemlich viele Fälle ansehen.
Wahrscheinlich gibt es auch einen einfacheren Weg, der mir auf die Schnelle aber nicht einfallen will.

MfG
Ladon

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]