matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisKoerzivität zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionalanalysis" - Koerzivität zeigen
Koerzivität zeigen < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koerzivität zeigen: mit Young
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:52 Di 22.01.2013
Autor: mikexx

Aufgabe
Zeigen Sie, dass

[mm] $F(u)=\int\limits_0^1 (1-u'(x)^2)^2+u(x)^2\, [/mm] dx$ mit [mm] $u\in W^{1,4}(0,1)$ [/mm]

koerziv ist.

Verwenden Sie dazu die Young-Ungleichung

[mm] $2ab\leq \varepsilon a^2+\frac{b^2}{\varepsilon}~\forall~a,b,\varepsilon [/mm] > 0$.



Also was ich zeigen muss, ist meines Wissens Folgendes:

Es gelte

[mm] $\lVert u_n\rVert_{L^4}+\lVert u_n'\rVert_{L^4}=\lVert u_n\rVert_{W^{1,4}}\to\infty$. [/mm]

Zeige [mm] $F(u_n)\to\infty$. [/mm]


Ich habe erstmal [mm] $F(u_n)$ [/mm] ausgeschrieben:

[mm] $F(u_n)=\int\limits_0^1 (1-u_n'(x)^2)^2+u_n(x)^2\, dx=\int\limits_0^1 1-2u_n'(x)^2+u_n'(x)^4+u_n(x)^2\, [/mm] dx$

Wie sieht man jetzt, daß dieses Integral gegen [mm] $\infty$ [/mm] geht und wie benutze ich zu diesem Nachweis die obige Ungleichung von Young?


Leider sehe ich's nicht.



Viele Grüße

mikexx

        
Bezug
Koerzivität zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:17 So 27.01.2013
Autor: Marcel

Hi,

> Zeigen Sie, dass
>
> [mm]F(u)=\int\limits_0^1 (1-u'(x)^2)^2+u(x)^2\, dx[/mm] mit [mm]u\in W^{1,4}(0,1)[/mm]
>  
> koerziv ist.
>  
> Verwenden Sie dazu die Young-Ungleichung
>  
> [mm]2ab\leq \varepsilon a^2+\frac{b^2}{\varepsilon}~\forall~a,b,\varepsilon > 0[/mm].
>  
>
> Also was ich zeigen muss, ist meines Wissens Folgendes:
>  
> Es gelte
>  
> [mm]\lVert u_n\rVert_{L^4}+\lVert u_n'\rVert_{L^4}=\lVert u_n\rVert_{W^{1,4}}\to\infty[/mm].
>  
> Zeige [mm]F(u_n)\to\infty[/mm].
>  
>
> Ich habe erstmal [mm]F(u_n)[/mm] ausgeschrieben:
>  
> [mm]F(u_n)=\int\limits_0^1 (1-u_n'(x)^2)^2+u_n(x)^2\, dx=\int\limits_0^1 1-2u_n'(x)^2+u_n'(x)^4+u_n(x)^2\, dx[/mm]
>  
> Wie sieht man jetzt, daß dieses Integral gegen [mm]\infty[/mm] geht
> und wie benutze ich zu diesem Nachweis die obige
> Ungleichung von Young?
>  
>
> Leider sehe ich's nicht.

einfach mal []hier (klick!) mitlesen! (Ob das
nun ein Crossposting von Dir ist, weiß ich (noch) nicht...)

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]