Körpererweiterungen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:55 So 15.04.2007 | Autor: | CPH |
Aufgabe | Sei d eine natürliche Zahl, die kein Quadrat ist. Sei [mm] \wurzel{d} [/mm] eine reelle Zahl, so dass [mm] (\wurzel{d})^2 [/mm] = d, und sei [mm] \wurzel{-d} [/mm] eine komplexe Zahl, so dass [mm] (\wurzel{-d})^2 [/mm] = -d. Wir definieren zwei Mengen [mm] \IQ(\wurzel{d}) [/mm] und [mm] \IQ(\wurzel{-d})
[/mm]
durch :
[mm] \IQ(\wurzel{d}) [/mm] := {a + b [mm] \wurzel{d} [/mm] : a, b [mm] \in \IQ [/mm] } [mm] \subseteq \IR [/mm] und [mm] \IQ(\wurzel{-d}) [/mm] := {a + b [mm] \wurzel{-d} [/mm] : a, b [mm] \in \IQ [/mm] } [mm] \subseteq \IC [/mm] .
1. Zeigen Sie : [mm] Q(\wurzel{d}) [/mm] ist ein Unterkörper von [mm] \IR, [/mm] und [mm] \IQ(\wurzel{-d}) [/mm] ist ein Unterkörper von [mm] \IC.
[/mm]
2. Bestimmen Sie die Grade der Körpererweiterungen [mm] \IQ \subseteq \IQ (\wurzel{d}) [/mm] und [mm] \IQ \subseteq \IQ(\wurzel{-d}). [/mm] |
Hallo, vielen Dank für eure Hilfe im Voraus:
zu 1. Was muss ich alles zu einem Unterkörper zeigen?
muss das null- element der Addition, das eins-element der Substitution, die vielfachen von zwei elementen und die verkettungen zweier elemente im Unterkörper enthaltensein?
Muss noch mehr enthalten sein?
Wie zeige ich das alles?
zu 2.
ich verstehe überhaupt nicht, was ich da machen soll.
MfG
Christoph
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:00 So 15.04.2007 | Autor: | felixf |
Hallo Christoph,
> Sei d eine natürliche Zahl, die kein Quadrat ist. Sei
> [mm]\wurzel{d}[/mm] eine reelle Zahl, so dass [mm](\wurzel{d})^2[/mm] = d,
> und sei [mm]\wurzel{-d}[/mm] eine komplexe Zahl, so dass
> [mm](\wurzel{-d})^2[/mm] = -d. Wir definieren zwei Mengen
> [mm]\IQ(\wurzel{d})[/mm] und [mm]\IQ(\wurzel{-d})[/mm]
> durch :
> [mm]\IQ(\wurzel{d})[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
:= {a + b [mm]\wurzel{d}[/mm] : a, b [mm]\in \IQ[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
}
> [mm]\subseteq \IR[/mm] und [mm]\IQ(\wurzel{-d})[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
:= {a + b [mm]\wurzel{-d}[/mm] :
> a, b [mm]\in \IQ[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
} [mm]\subseteq \IC[/mm] .
> 1. Zeigen Sie : [mm]Q(\wurzel{d})[/mm] ist ein Unterkörper von [mm]\IR,[/mm]
> und [mm]\IQ(\wurzel{-d})[/mm] ist ein Unterkörper von [mm]\IC.[/mm]
> 2. Bestimmen Sie die Grade der Körpererweiterungen [mm]\IQ \subseteq \IQ (\wurzel{d})[/mm]
> und [mm]\IQ \subseteq \IQ(\wurzel{-d}).[/mm]
> Hallo, vielen Dank für
> eure Hilfe im Voraus:
>
> zu 1. Was muss ich alles zu einem Unterkörper zeigen?
> muss das null- element der Addition, das eins-element der
> Substitution, die vielfachen von zwei elementen und die
> verkettungen zweier elemente im Unterkörper enthaltensein?
genau, und jedes Element im Unterkoerper ungleich 0 muss invertierbar sein. Und jedes negative eines Elementes muss enthalten sein.
> Wie zeige ich das alles?
Nachrechnen. Nimm dir z.B. zwei Elemente $a + [mm] \sqrt{d} [/mm] b$ und $c + [mm] \sqrt{d} [/mm] e$ und zeige, dass ihr Produkt ebenfalls von der Form $f + [mm] \sqrt{d} [/mm] g$ ist.
> zu 2.
> ich verstehe überhaupt nicht, was ich da machen soll.
Jede Koerpererweiterung von [mm] $\IQ$ [/mm] ist auf natuerliche Weise ein [mm] $\IQ$-Vektorraum. [/mm] Du sollst von den beiden Koerpern [mm] $\IQ(\sqrt{d})$ [/mm] und [mm] $\IQ(\sqrt{-d})$ [/mm] nun die [mm] $\IQ$-Vektorraumdimension [/mm] ausrechnen. Gib doch einfach jeweils eine Basis ueber [mm] $\IQ$ [/mm] an. Das ist wirklich ganz einfach.
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:11 Mo 16.04.2007 | Autor: | CPH |
Erst einmal vielen Dank, ich setz mich heute nachmittag dran und versuche es, wenn ich nicht klar komme versuche ich es erneut.
MfG
Christoph
|
|
|
|