matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieKörper, Polynom, ggT
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Zahlentheorie" - Körper, Polynom, ggT
Körper, Polynom, ggT < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körper, Polynom, ggT: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:35 Di 05.06.2007
Autor: LenaFre

Aufgabe
Zeigen Sie für einen Körper K und Polynome [mm] f_{1}, f_{2}, [/mm] g [mm] \in [/mm] K[t], [mm] g\not=0: [/mm]
[mm] f_{1}\equiv f_{2}(mod [/mm] g K[t]) [mm] \Rightarrow ggT(f_{1},g) [/mm] = [mm] ggT(f_{2}, [/mm] g)

Hallo zusammen!

Leider finde ich gar keinen Ansatz zu der Aufgabe dort oben.
Ich hoffe ihr könnt mir weiterhelfen und schonmal vielen Dank dafür!

        
Bezug
Körper, Polynom, ggT: Antwort
Status: (Antwort) fertig Status 
Datum: 09:58 Mi 06.06.2007
Autor: felixf

Hallo Lena!

> Zeigen Sie für einen Körper K und Polynome [mm]f_{1}, f_{2},[/mm] g
> [mm]\in[/mm] K[t], [mm]g\not=0:[/mm]
>   [mm]f_{1}\equiv f_{2}(mod[/mm] g K[t]) [mm]\Rightarrow ggT(f_{1},g)[/mm] = [mm]ggT(f_{2},[/mm] g)
>  Hallo zusammen!
>  
> Leider finde ich gar keinen Ansatz zu der Aufgabe dort oben.
> Ich hoffe ihr könnt mir weiterhelfen und schonmal vielen Dank dafür!

Das haengt ein wenig davon ab wie ihr den ggT definiert habt und was ihr schon darueber wisst. Im Allgemeinen wuerd ich es so beweisen: zeige, dass ein Polynom [mm]h \in K[t][/mm] genau dann ein Teiler von [mm] $f_1$ [/mm] und $g$ ist, wenn es ein Teiler von [mm] $f_2$ [/mm] und $g$ ist.

(Und fuer diese Aussage benutzt du dann, dass $g$ ein Teiler von [mm] $f_2 [/mm] - [mm] f_1$ [/mm] ist.)

Da der ggT normalerweise ueber Teiler definiert ist, folgt daraus, dass [mm] $ggT(f_1, [/mm] g) = [mm] ggT(f_2, [/mm] g)$ ist.

LG Felix


Bezug
                
Bezug
Körper, Polynom, ggT: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 12:25 Mi 06.06.2007
Autor: LenaFre

Danke für deine Antwort. Wir haben den ggT folgendermaßen definiert:

d [mm] \in [/mm] R heißt ggT von [mm] a_{1},a_{2},.....,a_{n}, [/mm] falls:
1) d ist gemeinssamer Teiler von [mm] a_{1},a_{2},.....,a_{n} [/mm] und
2) jeder gemeinsamer Teiler c von  [mm] a_{1},a_{2},.....,a_{n} [/mm] erfült: c teilt d

Und wir wissen auch, dass a [mm] \equiv [/mm] b mod(m) [mm] \gdw [/mm] m teilt (a-b).

Ich verstehe nicht was du mit $ meinst? Und wie zeige ich, dass  h genau dann ein Teiler von  [mm] f_{1} [/mm] und  g  ist, wenn es ein Teiler von  [mm] f_{2} [/mm] und  g  ist?

Bezug
                        
Bezug
Körper, Polynom, ggT: Antwort
Status: (Antwort) fertig Status 
Datum: 16:00 Mi 06.06.2007
Autor: felixf

Hallo!

> Danke für deine Antwort. Wir haben den ggT folgendermaßen
> definiert:
>  
> d [mm]\in[/mm] R heißt ggT von [mm]a_{1},a_{2},.....,a_{n},[/mm] falls:
>  1) d ist gemeinssamer Teiler von [mm]a_{1},a_{2},.....,a_{n}[/mm]
> und
>  2) jeder gemeinsamer Teiler c von  [mm]a_{1},a_{2},.....,a_{n}[/mm]
> erfült: c teilt d

Das ist die normale Definition. Gut.

> Und wir wissen auch, dass a [mm]\equiv[/mm] b mod(m) [mm]\gdw[/mm] m teilt
> (a-b).

Genau.

> Ich verstehe nicht was du mit $ meinst? Und wie zeige ich,

Da hat mir der Formeleditor einen Streich gespielt, das war ein Formelanfang/Formelende. Schau es dir nochmal an, ich habs jetzt verbessert.

> dass  h genau dann ein Teiler von  [mm]f_{1}[/mm] und  g  ist, wenn
> es ein Teiler von  [mm]f_{2}[/mm] und  g  ist?  

Nimm doch mal einen Teiler $h$ von [mm] $f_1$ [/mm] und $g$. Dann gilt [mm] $f_1 [/mm] = h [mm] \hat{f}_1$ [/mm] und $g = h [mm] \hat{g}$ [/mm] mit [mm]\hat{f}_1, \hat{g} \in K[t][/mm]. Jetzt musst du zeigen, dass $h$ auch ein Teiler von [mm] $f_2$ [/mm] ist.

Jetzt weisst du aber, dass $g$ ein Teiler von [mm] $f_1 [/mm] - [mm] f_2$ [/mm] ist, also dass [mm] $f_1 [/mm] - [mm] f_2 [/mm] = g [mm] \tilde{g}$ [/mm] ist mit [mm]\tilde{g} \in K[t][/mm]. Damit ist [mm] $f_2 [/mm] = [mm] f_1 [/mm] - g [mm] \tilde{g} [/mm] = ...$ und jetzt musst du mal ein wenig einsetzen...

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]