matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraKörper
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Körper
Körper < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körper: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 10:12 Sa 14.01.2006
Autor: ShinySmile

Aufgabe
Ist [mm] SL_{2}(\IZ_{2}) [/mm] ein Körper ( warum oder warum nicht)?

Wir wissen das Det von [mm] SL_{2}\IZ_{2} [/mm] immer 1 ist...
Und nach den Gesetzen des Körpers, muss eine Matrix A Verknüpft mit einer Matrix B eine Matrix C ergeben, die auch den gesetzen entspricht...

Sei [mm] A=\pmat{0 & 1 \\ 1 & 0} [/mm]
und [mm] B=\pmat{1 & 0 \\ 0 & 1} [/mm]
det(A)= -1 aber modulo 2 ist -1=1
det(B)= 1

Nach Matrizen addition ergibt A+B=C
C= [mm] \pmat{1 & 1 \\ 1 & 1} [/mm]

=> det(C)= 0

=>C kann keine Matrix von [mm] SL_{2}\IZ_{2} [/mm] sein
[mm] =>SL_{2}\IZ_{2} [/mm] ist kein Körper.

Stimmt das so.....?

        
Bezug
Körper: scho recht
Status: (Antwort) fertig Status 
Datum: 10:45 Sa 14.01.2006
Autor: moudi


> Ist [mm]SL_{2}(\IZ_{2})[/mm] ein Körper ( warum oder warum nicht)?
>  Wir wissen das Det von [mm]SL_{2}\IZ_{2}[/mm] immer 1 ist...
>  Und nach den Gesetzen des Körpers, muss eine Matrix A
> Verknüpft mit einer Matrix B eine Matrix C ergeben, die
> auch den gesetzen entspricht...
>  
> Sei [mm]A=\pmat{0 & 1 \\ 1 & 0}[/mm]
>  und [mm]B=\pmat{1 & 0 \\ 0 & 1}[/mm]
>  
> det(A)= -1 aber modulo 2 ist -1=1
>  det(B)= 1
>  
> Nach Matrizen addition ergibt A+B=C
>  C= [mm]\pmat{1 & 1 \\ 1 & 1}[/mm]
>  
> => det(C)= 0
>  
> =>C kann keine Matrix von [mm]SL_{2}\IZ_{2}[/mm] sein
>  [mm]=>SL_{2}\IZ_{2}[/mm] ist kein Körper.
>  
> Stimmt das so.....?

Hallo ShinySmile

Ja so ist es schon recht, man muss allerdings noch präzisieren, dass [mm]SL_{2}\IZ_{2}[/mm] mit der Matrixmultiplikation und Matrixaddition kein Körper ist. Man kann aber diese Menge auch auf keine andere Weise zu einem Körper machen, weil die Kardinalität eines endlichen Körpers stets eine Primzahlpotenz sein muss, und [mm]SL_{2}\IZ_{2}[/mm] (wenn ich mich nicht geirrt habe) 6 Elemente besitzt.

mfG Moudi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]