matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesKörper
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra Sonstiges" - Körper
Körper < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körper: Hilfe bei der Aufgabe
Status: (Frage) beantwortet Status 
Datum: 01:32 Di 05.05.2015
Autor: rsprsp

Aufgabe
Auf der Menge [mm] \IR [/mm] x [mm] \IR [/mm] seien die folgenden Operationen definiert

(x,y) [mm] \oplus [/mm] (u,v) := (x+u,y+v)
(x,y) [mm] \odot [/mm] (u,v) := (x*u-y*v,x*v+y*u)

Zeigen Sie, dass sich dabei um einen Körper handelt

Bin stehen geblieben beim multiplikativen Eigenschaften beim neutralen Element

Es muss gelten:

(x,y) [mm] \odot [/mm] (u,v) := (x,y)

also muss es ein Element geben was gleichzeitig y und x wegkürzt.

Kann mir jemand bei dieser Aufgabe helfen ?

        
Bezug
Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 04:25 Di 05.05.2015
Autor: fred97

Ist (u,v) das neutrale Element bzgl. [mm] \odot, [/mm] so muss gelten

(1)   $(x,y)  [mm] \odot [/mm]  (u,v) = (x,y)$   für alle $x,y [mm] \in \IR$. [/mm]

(1) übersetzt lautet:


(2) $(x*u-y*v,x*v+y*u) =(x,y)$  für alle $x,y [mm] \in \IR$. [/mm]


Nun sieh Dir (2) mal an mit x=1 und y=0. Wie lautet dann (u,v) notwendigerweise ?

FRE

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]