matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenKönigsdiziplin Basis
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Königsdiziplin Basis
Königsdiziplin Basis < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Königsdiziplin Basis: Basis
Status: (Frage) beantwortet Status 
Datum: 19:09 Mi 04.11.2009
Autor: kolja2

Aufgabe
Wir betrachten die lineare Abbildung

[mm] φ:\IR [/mm] hoch 3 [mm] \to \IR [/mm] hoch 2 mit φ [mm] \vektor{x_{1} \\ x_{2} \\ x_{2}} [/mm] = [mm] \pmat{ x_{1} & x_{2} \\ x_{2} & x_{3} } [/mm]  also [mm] x_{1} [/mm] −  [mm] x_{2}, x_{2} [/mm] −  [mm] x_{3} [/mm]

Bestimmen Sie eine Basis des Kerns ker(φ) dieser linearen Abbildung. Wie groß ist die Dimension des Kerns?

Hi Leute,

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
also ich versuche schon die ganze Zeite eine Lösung zu dieser schwierigen Aufgabe zu finden. Vielleicht könnt ihr mir helfen?

        
Bezug
Königsdiziplin Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 19:26 Mi 04.11.2009
Autor: Arcesius

Hallo

> Wir betrachten die lineare Abbildung
>  
> [mm]φ:\IR[/mm] hoch 3 [mm]\to \IR[/mm] hoch 2 mit φ [mm]\vektor{x_{1} \\ x_{2} \\ x_{2}}[/mm]
> = [mm]\pmat{ x_{1} & x_{2} \\ x_{2} & x_{3} }[/mm]  also [mm]x_{1}[/mm] −  
> [mm]x_{2}, x_{2}[/mm] −  [mm]x_{3}[/mm]
>  
> Bestimmen Sie eine Basis des Kerns ker(φ) dieser linearen
> Abbildung. Wie groß ist die Dimension des Kerns?
>  Hi Leute,
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  also ich versuche schon die ganze Zeite eine Lösung zu
> dieser schwierigen Aufgabe zu finden. Vielleicht könnt ihr
> mir helfen?

Weisst du, was der Kern ist?

Vielleicht ist es nicht die einzige Möglichkeit, die Aufgabe zu lösen, aber ich würde eine Darstellungsmatrix der linearen Abbildung bestimmen (Einheitsvektoren abbilden, das Bild sind die Spalten der Darstellungsmatrix), dann kannst du den Kern der Matrix bestimmen.

Grüsse, Amaro


P.S ich habe ein Kern mit einem Basisvektor..

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]