matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete MathematikKoeffizient
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Diskrete Mathematik" - Koeffizient
Koeffizient < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koeffizient: Idee
Status: (Frage) beantwortet Status 
Datum: 16:46 Mo 26.11.2012
Autor: HelpMan

Aufgabe
Was ist der Koeffizient von $wx^4y^3z$ in [mm] $(w+x+y+z)^9$? [/mm]



Lösungsidee:
Ich reduziere [mm] $(w+x+y+z)^9$ [/mm] so, dass ich nur noch den Summanden $wx^4y^3z$ habe.

D.h.
[mm] (w+x+y+z)^9 [/mm]
= [mm] (w+x+y+z)(w+x+y+z)^8 [/mm]      
, da ich nun nur die Summanden betrachte, wo  w einmal vorkommt kann ich reduzieren auf mit Koeffizient 1 [mm] (w)(x+y+z)^8... [/mm]
[mm] w(x+y+z)(x+y+z)^7 [/mm]
nun reduziere ich nochmals weil ich nur z einmal drin haben will mit Koeffizient 1...
[mm] wz(x+y)^7... [/mm]
der koeffizient von [mm] x^4y^3 [/mm] ist $7 [mm] \choose [/mm]  {3}$$ = 35$...

daraus ergibt sich der gesamte Koeffzient als 35...

Ist das korrekt? Hab ich etwas übersehen bzw. vergessen?

        
Bezug
Koeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 16:59 Mo 26.11.2012
Autor: MathePower

Hallo HelpMan,


> Was ist der Koeffizient von [mm]wx^4y^3z[/mm] in [mm](w+x+y+z)^9[/mm]?
>  
>
> Lösungsidee:
>  Ich reduziere [mm](w+x+y+z)^9[/mm] so, dass ich nur noch den
> Summanden [mm]wx^4y^3z[/mm] habe.
>  
> D.h.
>  [mm](w+x+y+z)^9[/mm]
>  = [mm](w+x+y+z)(w+x+y+z)^8[/mm]      
> , da ich nun nur die Summanden betrachte, wo  w einmal
> vorkommt kann ich reduzieren auf mit Koeffizient 1
> [mm](w)(x+y+z)^8...[/mm]
>  [mm]w(x+y+z)(x+y+z)^7[/mm]
>  nun reduziere ich nochmals weil ich nur z einmal drin
> haben will mit Koeffizient 1...
>  [mm]wz(x+y)^7...[/mm]
>  der koeffizient von [mm]x^4y^3[/mm] ist [mm]7 \choose {3}[/mm][mm] = 35[/mm]...
>  
> daraus ergibt sich der gesamte Koeffzient als 35...
>  


Das stimmt leider nicht.

Wenn Du den binomischen Lehrsatz mehrfach anwendest,
dann kannst Du auch eine Formel finden, wie der
Koeffizient allgemein lautet.


> Ist das korrekt? Hab ich etwas übersehen bzw. vergessen?


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]