matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Knobelaufgabe?!
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - Knobelaufgabe?!
Knobelaufgabe?! < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Knobelaufgabe?!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:49 Mi 21.04.2010
Autor: Keywey

Aufgabe
Ein Quadrat mit der Seitenlänge a=8cm wird in neun gleich große Quadrate aufgeteilt, von denen das mittlere Quadrat rot angemalt wird. Jedes der acht nicht angemalten Quadrate wird wiederum in neun gleich große Quadrate  eingeteilt und wieder wird jeweils das mittlere Quadrat rot angemalt. Dieser Prozess wird fortgesetzt.
Berechne die Größe der nicht angemalten Fläche, nachdem sechs Farbvorgänge stattgefunden haben.

Guten Abend!

Diese Aufgabe kam mir heute bei der Mathenachhilfe vor die Augen. Allerdings hatte ich nur noch 2 Minuten Zeit und habe mich dann entschieden sie zuhause zu lösen! Die Aufgabe stellte sich für mich aber doch als schwerer heraus...

Ich möchte die gefärbte Fläche berechnen und diese dann von der Gesamtfläche abziehen, um auf die freie Fläche zu kommen!

Diese Formel habe ich aufgestellt:

[mm] 64-64*(\bruch{8^0}{9^1}+\bruch{8^1}{9^2}+\bruch{8^2}{9^3}+\bruch{8^3}{9^4}+\bruch{8^4}{9^5}+\bruch{8^5}{9^6}) [/mm]

Stimmt die? Ich bekomme dann nämlich für die gefärbte Fläche mehr als die Hälfte von 64cm² raus =O

Im Voraus schon einmal danke für die Hilfe!
Gruß, keywey

        
Bezug
Knobelaufgabe?!: Antwort
Status: (Antwort) fertig Status 
Datum: 19:59 Mi 21.04.2010
Autor: Karl_Pech

Hallo Keywey,


Sei [mm]a\![/mm] die Seitenlänge des Anfangsquadrats in cm. Sei [mm](2k+1)^2[/mm] die Anzahl der gleich großen Quadrate in die das Anfangsquadrat geteilt wird. Zieht man die Fläche des mittleren Quadrats ab, erhält man folgende Restfläche für die erste Iteration:


[mm]F_0 = \frac{\left((2k+1)^2-1\right)\cdot{}a^2}{(2k+1)^2}\;\left[\texttt{cm}^2\right][/mm]


Für [mm]F_1[/mm] muß [mm]\tfrac{a^2}{(2k+1)^2}[/mm] weiter unterteilt werden: [mm]\left((2k+1)^2-1\right)\tfrac{a^2}{(2k+1)^4}[/mm]. Also insgesamt:


[mm]F_1 = \left((2k+1)^2-1\right)^2\frac{a^2}{(2k+1)^4}\;\left[\texttt{cm}^2\right][/mm]


Jetzt machen wir so weiter:


[mm]F_2 = \left((2k+1)^2-1\right)^3\frac{a^2}{(2k+1)^6}\;\left[\texttt{cm}^2\right][/mm]


Also gilt allgemein für die [mm]i\texttt{-te}[/mm] Iteration:


[mm]F_i(a,k) = \left((2k+1)^2-1\right)^{i+1}\frac{a^2}{(2k+1)^{2(i+1)}}\;\left[\texttt{cm}^2\right][/mm]


und für deinen Fall:


[mm]F_5(8,1)=8^6\cdot{}\frac{8^2}{9^{12}}\;\left[\texttt{cm}^2\right]=5.94\cdot{}10^{-5}\;\left[\texttt{cm}^2\right][/mm]


Könnte die restliche Fläche wirklich so klein werden, oder übersehe ich etwas?



Viele Grüße
Karl




Bezug
                
Bezug
Knobelaufgabe?!: Fehler
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:13 Mi 21.04.2010
Autor: Keywey

Hallo :)
Vorab: Danke für die schnelle und ausführliche Antwort.
Ich habe glaube ich den Fehler im letzten Schritt entdeckt.
Dort hast du (darf ich dutzen?^^) für meinen Fall den Wert der freien Fläche ausgerechnet. Dabei ist k=1.
Dann steht dort aber nicht [mm] F_{5}(8,1)=8^6* \bruch{8^2}{9^{12}} [/mm]
sondern: [mm] F_{5}(8,1)=8^6*\bruch{8^2}{3^{12}} [/mm] oder?
Das ergäbe dann: [mm] \approx7,707*10^-3 cm^2 [/mm]

Ist aber trotzdem noch sehr wenig?!?!

Bezug
                        
Bezug
Knobelaufgabe?!: beide verrechnet
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:17 Mi 21.04.2010
Autor: Karl_Pech


>  Vorab: Danke für die schnelle und ausführliche Antwort.
>  Ich habe glaube ich den Fehler im letzten Schritt
> entdeckt.
>  Dort hast du (darf ich dutzen?^^) für meinen Fall den
> Wert der freien Fläche ausgerechnet. Dabei ist k=1.
>  Dann steht dort aber nicht [mm]F_{5}(8,1)=8^6* \bruch{8^2}{9^{12}}[/mm]
>  
> sondern: [mm]F_{5}(8,1)=8^6*\bruch{8^2}{3^{12}}[/mm] oder?
>  Das ergäbe dann: [mm]\approx7,707*10^-3 cm^2[/mm]


Da haben wir uns wohl beide verrechnet.


Es gilt: [mm]\tfrac{8^6\cdot{}8^2}{3^{12}}=\tfrac{16777216}{531441}\approx 31.56929179344462\;\left[\texttt{cm}^2\right][/mm]. Und das sind ungefähr 49% von der Fläche des ursprünglichen Quadrats. Man sieht aber auch so, daß Stefan und ich dieselbe Formel rausgekriegt haben. Sein Ansatz ist jedoch wesentlich eleganter: Warum einzelne Quadrate betrachten, wenn man die gesamte Restfläche auf einmal betrachten kann. :)



Viele Grüße
Karl




Bezug
        
Bezug
Knobelaufgabe?!: Antwort
Status: (Antwort) fertig Status 
Datum: 21:26 Mi 21.04.2010
Autor: Blech

Hi,

> Diese Formel habe ich aufgestellt:

die stimmt.


Aber wesentlich einfacher ist die direkte Betrachtung der freien Fläche.

Nach dem ersten Schritt sind [mm] $\frac89$ [/mm] frei. Beim zweiten wird jetzt [mm] $\frac19$ [/mm] der restlichen Fläche angemalt, d.h. [mm] $\frac89 *\frac89$ [/mm] der urspr. Fläche bleiben frei.

Also sind nach dem 6. noch [mm] $\left( \frac89\right)^6\approx 49\%$ [/mm] frei.

ciao
Stefan

Bezug
                
Bezug
Knobelaufgabe?!: erste Näherung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:22 Do 22.04.2010
Autor: informix

Hallo allerseits,

> Hi,
>  
> > Diese Formel habe ich aufgestellt:
>  
> die stimmt.
>  
>
> Aber wesentlich einfacher ist die direkte Betrachtung der
> freien Fläche.
>  
> Nach dem ersten Schritt sind [mm]\frac89[/mm] frei. Beim zweiten
> wird jetzt [mm]\frac19[/mm] der restlichen Fläche angemalt, d.h.
> [mm]\frac89 *\frac89[/mm] der urspr. Fläche bleiben frei.
>  
> Also sind nach dem 6. noch [mm]\left( \frac89\right)^6\approx 49\%[/mm]
> frei.
>  

Das kann man übrigens schon mit einer "ersten Näherung" überprüfen:

[mm] (1-0,\overline{1})^6\approx 1-6*0,1^1+15*0,1^2\pm...\ge0,4 [/mm] (Binomialentwicklung)

Der Begriff "erste" Näherung kommt daher, dass man eigentlich nur zwei Terme berechnen muss, um eine Abschätzung nach unten zu erhalten.

Gruß informix

Bezug
                        
Bezug
Knobelaufgabe?!: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:39 Do 22.04.2010
Autor: Keywey


Bezug
                                
Bezug
Knobelaufgabe?!: Leere Frage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:06 Fr 23.04.2010
Autor: M.Rex

Hallo

Was auch immer du mit einer leeren Mittelung mitteilen willst, ich habs mal aus den offenen Frage genommen.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]