matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik (Anwendungen)Kleinste Quadrate Methode
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Statistik (Anwendungen)" - Kleinste Quadrate Methode
Kleinste Quadrate Methode < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kleinste Quadrate Methode: Verständnissfrage
Status: (Frage) beantwortet Status 
Datum: 14:14 So 04.07.2010
Autor: SnafuBernd

Aufgabe
Passen Sie an die folgenden Daten mit Hilfe des KQ-Ansatzes das Modell y = [mm] mx^2 [/mm] + b an, und
berechnen Sie den Wert des Bestimmtheitsmaßes.

Hi,
ich hoffe ich bin hier mit dieser Frage richtig.
Also, der KQ- Ansatz lautet ja : [mm] \min_{a,b}\summe_{i=1}^{n} (y_i [/mm] - [mm] mx_i^2 [/mm] -b)
dadurch ergeben sich die beiden Bedingungen:
[mm] \frac{\partial \summe_{i=1}^{n}(...)}{\partial m} [/mm] = 2 [mm] \summe_{i=1}^{n} (y_i [/mm] - [mm] mx_i^2 [/mm] -b) [mm] (-x_i^2) [/mm] = 0
[mm] \frac{\partial \summe_{i=1}^{n}(...)}{\partial b} [/mm] = 2 [mm] \summe_{i=1}^{n} (y_i [/mm] - [mm] mx_i^2 [/mm] -b) (-1) = 0

jetzt will ich die Steigung meiner Regressionsgerade m berechnen m= [mm] \frac{Cov(x,y)}{s_x^2} [/mm] in meiner Lösung steht aber nun:
m= [mm] \frac{\frac{1}{n}\sum_{i=1}^n y_ix_i^2 - \overline{y}\overline{x^2}}{\frac{1}{n}\sum_{i=1}^n x_i^4 - \overline{x^2}^2}, [/mm] was ja = [mm] \frac{Cov(y,x^2)}{s_{x^2}^{x^2}} [/mm]

wieso nun das [mm] x^2 [/mm] und nicht x?

Snafu

        
Bezug
Kleinste Quadrate Methode: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:44 So 04.07.2010
Autor: max3000


>  Also, der KQ- Ansatz lautet ja :
> [mm]\min_{a,b}\summe_{i=1}^{n} (y_i[/mm] - [mm]mx_i^2[/mm] -b)

Das ist nicht ganz richtig. Du willst die kleinsten QUADRATE!!! Also:

[mm] \min_{a,b}\summe_{i=1}^{n}(y_i-mx_i^2-b)^2 [/mm]

Bezug
        
Bezug
Kleinste Quadrate Methode: Antwort
Status: (Antwort) fertig Status 
Datum: 14:45 So 04.07.2010
Autor: MathePower

Hallo SnafuBernd,

> Passen Sie an die folgenden Daten mit Hilfe des KQ-Ansatzes
> das Modell y = [mm]mx^2[/mm] + b an, und
>  berechnen Sie den Wert des Bestimmtheitsmaßes.
>  Hi,
>  ich hoffe ich bin hier mit dieser Frage richtig.
>  Also, der KQ- Ansatz lautet ja :
> [mm]\min_{a,b}\summe_{i=1}^{n} (y_i[/mm] - [mm]mx_i^2[/mm] -b)
>  dadurch ergeben sich die beiden Bedingungen:
>  [mm]\frac{\partial \summe_{i=1}^{n}(...)}{\partial m}[/mm] = 2
> [mm]\summe_{i=1}^{n} (y_i[/mm] - [mm]mx_i^2[/mm] -b) [mm](-x_i^2)[/mm] = 0
>  [mm]\frac{\partial \summe_{i=1}^{n}(...)}{\partial b}[/mm] = 2
> [mm]\summe_{i=1}^{n} (y_i[/mm] - [mm]mx_i^2[/mm] -b) (-1) = 0
>  
> jetzt will ich die Steigung meiner Regressionsgerade m
> berechnen m= [mm]\frac{Cov(x,y)}{s_x^2}[/mm] in meiner Lösung steht
> aber nun:
>  m= [mm]\frac{\frac{1}{n}\sum_{i=1}^n y_ix_i^2 - \overline{y}\overline{x^2}}{\frac{1}{n}\sum_{i=1}^n x_i^4 - \overline{x^2}^2},[/mm]
> was ja = [mm]\frac{Cov(y,x^2)}{s_{x^2}^{x^2}}[/mm]
>  
> wieso nun das [mm]x^2[/mm] und nicht x?


[mm]\blue{x^{2}}[/mm] deshalb, weil hier das Modell [mm]y=m* \blue{x^{2}}+b[/mm] lautet.


>  
> Snafu



Gruss
MathePower

Bezug
                
Bezug
Kleinste Quadrate Methode: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:56 So 04.07.2010
Autor: SnafuBernd

Hi,

ja das klingt ersichtlich!! Danke!!

Snafu

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]