matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikKleinste-Qudrate Schätzer
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Kleinste-Qudrate Schätzer
Kleinste-Qudrate Schätzer < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kleinste-Qudrate Schätzer: Eigenschaften?
Status: (Frage) beantwortet Status 
Datum: 12:41 Fr 15.09.2006
Autor: kringel

Hallo zusammen, ich mache mir Gedanken über die Eigenschaften von dem kleinsten Quadrate Schätzer. Allgemein würde ich sagen, der KQ-Schätzer sei ein M-Schätzer.  Betrachten wir ein lineares Modell mit unabhängigen [mm] $N(0,\sigma^2)$-verteilten [/mm] Fehlern, so würde ich weiter sagen, der KQ-Schätzer sei erwartungstreu, äquivariant und UMVU. (Stimmt das so?)
Jetzt interessieren mich zwei Dinge:
a) Wie steht es mit anderen Eigenschaften (UMRE, Zulässig, Minimax, extended Bayes, Bruchpunkt, sensitivität)
b) Welche Eigenschaften gelten für welche Modelle? Unabhängig vom Modell?

Ich danke für eure Hife!



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kleinste-Qudrate Schätzer: Antwort
Status: (Antwort) fertig Status 
Datum: 10:33 Sa 16.09.2006
Autor: BAGZZlash

Was sind M-Schätzer und was ist UMVU?
Allgemein ist OLS BLUE (best linear unbiased estimator), bei normalverteilten Residuen kann die Linearität sogar weggelassen werden.
Sind die Residuen [mm]u_{t} \sim N(0,\sigma^{2})[/mm], ist der Schätzer erwartungstreu (unverzerrt - unbiased), das ist richtig, Normalverteilung ist dafür jedoch nicht unbedingt erforderlich. Es reicht, wenn der stochastische Prozess der Residuen schwach stationär ist, oder sogar noch weniger, er muß sogar nur einen Erwartungswert von Null haben. Das bedeutet, selbst wenn [mm](u_{t})_{t \in \IZ}[/mm] instationär ist (z.B. ein random walk), so ist OLS erwartungstreu, allerdings wegen der nicht konstanten Varianz dann natürlich nicht mehr konsistent. Aber: Bei konstanter Varianz ist OLS konsistent! Außerdem ist OLS effizient, was das "best" von BLUE schon andeutet: Es wird die Cramer-Rao-Varianzuntergrenze erreicht.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]