Kern und Rang einer Matrix < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Berechnen Sie den Kern der Matrix
A = [mm] \pmat{ 1 & 0 & -1 & 1 \\ 1 & 2 & 1 & 1 \\ -2 & -6 & -4 & -2 \\ -1 & 2 & 3 & -1 }
[/mm]
Welche Dimension hat der Kern von A und welchen Rang besitz die Matrix A? |
Hallo,
brauche hier mal Hilfe, komme einfach nicht weiter.
Habe die Matrix erstmal zu einem homogenen System erweitert und den Gauß-Alg. darauf angewand.
[mm] \pmat{ 1 & 0 & -1 & 1 & 0 \\ 1 & 2 & 1 & 1 & 0 \\ -2 & -6 & -4 & -2 & 0 \\ -1 & 2 & 3 & -1 & 0 }
[/mm]
=> [mm] \pmat{ 1 & 0 & -1 & 1 & 0 \\ 0 & 2 & 2 & 0 & 0 \\ 0 & -6 & -6 & 0 & 0 \\ 0 & 2 & 2 & 0 & 0 }
[/mm]
=> [mm] \pmat{ 1 & 0 & -1 & 1 & 0 \\ 0 & 2 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 }
[/mm]
daraus habe ich dann das es zwei Lösungen des homogenen Syst. geben muss:
[mm] x^{1} [/mm] = [mm] \vektor{x_{1}^{1} \\ x_{2}^{1} \\ 0 \\ 1} [/mm] und [mm] x^{2} [/mm] = [mm] \vektor{x_{1}^{2} \\ x_{2}^{2} \\ 1 \\ 0}
[/mm]
mit Hilfe der letzten Matrix bekomme ich für [mm] x^{1} [/mm] = (-1, 0, 0, [mm] 1)^{t} [/mm] und [mm] x^{2} [/mm] = (1, -1, 1, [mm] 0)^{t}
[/mm]
Daraus ergibt sich ja dann dim (Kern (A)) = 2.
Jetzt habe ich aber keine Ahnung wie ich auf den Rang von A komme, ich wollte die Deminsionsformel anwenden :
dim(Kern(A) = n - Rang(A), aber dafür müsste ich wissen das die Matrix nicht regulär ist, oder?Was ich aber nicht weiß...
Wie kann man hier denn weiter machen?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo,
die einzelnen Rechenschritte habe ich nicht kontrolliert. Aber wenn du eine Matrix in Zeilenstufenform hast, kannst du doch den Rang direkt ablesen: Die Anzahl der von 0 verschiedenen Zeilen. Also bei dir 2. Das liefert auch der Dim-Satz.
Gruß Patrick
|
|
|
|