matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraKern einer lin. Abbildung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Kern einer lin. Abbildung
Kern einer lin. Abbildung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kern einer lin. Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:16 Sa 25.11.2006
Autor: Manabago

Aufgabe
Sei f: [mm] R^3 \to R^3 [/mm] eine lineare Abbildung:
[mm] f(x_{1}, x_{2}, x_{3}) [/mm] = [mm] (x_{1} [/mm] - [mm] x_{2} [/mm] + [mm] 2x_{3}, 2x_{1} [/mm] + [mm] x_{2}, -x_{1} -2x_{2} [/mm] + [mm] 2x_{3}) [/mm]
Bestimme Kern und Bild von f.  

Den Kern hab ich schon bestimmt, der ist meiner Meinung nach [mm] \{ t(-\bruch{1}{2}, 1, 1), t \in R \}. [/mm] Wäre das eurer Meinung nach richtig? Um das Bild zu bestimmen, brauch ich eure Hilfe. Ich hab 2 stunden daran herum probiert, und nur Blödsinn herausbekommen. Wäre für einen Ansatz sehr dankbar. Lg

        
Bezug
Kern einer lin. Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:11 Sa 25.11.2006
Autor: Martin243

Hallo,

leider ist dein Kern falsch!
Mach doch mal die Probe und wende deine Abbildung auf einen Vektor aus deinem Kern an. Es kommt nicht der Nullvektor heraus!

Um das Bild zu bestimmen, kannst du einfach eine beliebige Basis des [mm] $\IR^3$ [/mm] nehmen und die Abbildung auf diese Basisvektoren anwenden. Aus den erhaltenen Vektoren wählst du dann diejenigen aus, die paarweise linear unabhängig sind und dabei zusammen die größtmögliche Menge bilden. (Wenn du bereits die Dimension des Kerns kennst, weißt du aber automatisch, wie groß die Basis des Bildes sein muss...)


Gruß
Martin

Bezug
                
Bezug
Kern einer lin. Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:38 Sa 25.11.2006
Autor: Manabago

Stimmt hatte einen Angabefehler in meiner Berechnung. Für den Kern muss ich ja einfach die Koordinaten des Bildes gleich 0 setzten (da ja Kef(f)={f(v)=0}). Also hab ich folgendes GLS:
I:    [mm] x_{1} [/mm] - [mm] x_{2} [/mm] + [mm] 2x_{3} [/mm] = 0
II:  [mm] 2x_{1} [/mm] + [mm] x_{2} [/mm] = 0
III: [mm] -x_{1} [/mm] - [mm] 2x_{2} [/mm] + [mm] 2x_{3} [/mm] = 0

Also hab ich für die 2. Gl: [mm] x_{1} [/mm] = [mm] -\bruch{x_{2}}{2}. [/mm] Eingesetzt in die 1. und 3. krieg ich dann:
1.: [mm] x_{3} [/mm] = [mm] 3x_{2}, [/mm] Also ist der Kern: [mm] \{ t( -\bruch{1}{2}, 1, 3), t \in R \}. [/mm] Stimmt das so???

Für das Bild muss ich doch alle Vektoren (x,y,z) finden, die die obige Bedingung erfüllen, also:

I:    [mm] x_{1} [/mm] - [mm] x_{2} [/mm] + [mm] 2x_{3} [/mm] = x
II:  [mm] 2x_{1} [/mm] + [mm] x_{2} [/mm] = y
III: [mm] -x_{1} [/mm] - [mm] 2x_{2} [/mm] + [mm] 2x_{3} [/mm] = z
Aber so komm ich auf nichts, wäre der Ansatz richtig?

Deiner Meinung nach nehm ich also zB (1,0,0), (0,1,0), (0,0,1). Nach Anwendung von f bekomm ich dann also, folgende Vektoren:
(1,2,-1), (-1,1,-2), (2,0,2)

Deine weiteren Tipps kann ich aber nicht wirklich nachvollziehen, hoffe du kannst mir noch mal helfen...

Lg


Bezug
                        
Bezug
Kern einer lin. Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:35 Sa 25.11.2006
Autor: Martin243

Hallo,

> 1.: [mm] x_{3} [/mm] = [mm] 3x_{2}, [/mm] Also ist der Kern: [mm] \{ t( -\bruch{1}{2}, 1, 3), t \in R \}. [/mm] Stimmt das so???

Nein! Mach doch bitte die Probe.

> Deiner Meinung nach nehm ich also zB (1,0,0), (0,1,0), (0,0,1). Nach
> Anwendung von f bekomm ich dann also, folgende Vektoren:
> (1,2,-1), (-1,1,-2), (2,0,2)

Genau. Und nun prüfst du, wieviele von den dreien du in die Bildbasis aufnehmen kannst. Nimmst du alle drei, dann stellst du fest, dass sie linear abhängig sind, was ja der Definition einer Basis widerspricht. Also schau, ob du zwei davon auswählen kannst, die nicht linear abhängig sind. Dann bekommst du eine Basis für Bild(f).


Gruß
Martin


Bezug
                                
Bezug
Kern einer lin. Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:17 Sa 25.11.2006
Autor: Manabago

Sorry für dieses chaotische Lösung des GLS. Die lösung lautet natürlich: Ker(f)= [mm] \{t(1, -2, -\bruch{3}{2}), t \in R\}. [/mm]

Weiter zum Bild. 2 lin. unabhängige Basisvektoren für das Bild lauten also (1, 2, -1) und (-1, 1, -2). So heißt das jetzt quasi das mein Bild der [mm] R^2 [/mm] ist??? Die Dimension für den Kern ist aber 1, die für das Bild 2. Wie ist da der Zusammenhang? Vielleicht hast du noch mal schnell Zeit, wär nett.

Lg

Bezug
                                        
Bezug
Kern einer lin. Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:31 Sa 25.11.2006
Autor: Martin243

Hallo,

dann hat das mit dem Kern doch noch geklappt [happy]

> So heißt das jetzt quasi das mein Bild der [mm] $\IR^2$ [/mm] ist???

Das "quasi" ist hier schon angebracht. Nein, es ist nicht der [mm] $\IR^2$. [/mm] Es ist nur ein Vektorraum, der isomorph ist zum [mm] $\IR^2$. [/mm]

> Die Dimension für den Kern ist aber 1, die für das Bild 2. Wie ist da der Zusammenhang?

Falls du das noch nicht kennst, lernst du das GARANTIERT noch. Eine sehr wichtige Beziehung drückt die Dimensionsformel für lineare Abbildungen aus:
[mm]\dim{}Kern(f) + \dim{}Bild(f) = \dim{}V[/mm]
für [mm] $f:V\rightarrow [/mm] W$ lineare Abbildung und $V$ endlichdimensional.


Gruß
Martin

Bezug
                                                
Bezug
Kern einer lin. Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:05 So 26.11.2006
Autor: Manabago

Ja, gottseidank. Vielen dank für deine Geduld. Und als Lösungsmenge hab ich dann einfach:

Im(f) = [mm] \{a(1,2,-1)+b(-1,1,-2), a, b \in R \}.? [/mm]

(Hoffe sehr, dass du mir noch ein letztes Mal antwortest ;))

Lg Manuel

Bezug
                                                        
Bezug
Kern einer lin. Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:17 So 26.11.2006
Autor: Martin243

Hallo,

> Im(f) = [mm] \{a(1,2,-1)+b(-1,1,-2), a, b \in R \}.? [/mm]

Ja. Einen Tick schöner finde ich die Schreibweise
Im(f) = [mm] $\left\{\vec{x}\in\IR^3 \Bigg| \vec{x}=a\vektor{1\\2\\-1}+b\vektor{-1\\1\\-2}, a,b\in\IR\right\}$. [/mm]

> (Hoffe sehr, dass du mir noch ein letztes Mal antwortest ;))

Gern. Für dieses Mal.


Gruß
Martin

Bezug
                                                                
Bezug
Kern einer lin. Abbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:20 So 26.11.2006
Autor: Manabago

Bin dir sehr dankbar für deine Hilfe. Jetzt hab ichs. Hoffe, du bist morgen auch noch da (der Berg von Aufgaben für Montag wird erst langsam kleiner :)). Gute nacht

Manuel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]